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ABSTRACT

The pig slurry (PS) application as an organic fertilizer in Brazilian soils occurs for many years and the effects of this 
application are known, but in this study our objective was to evaluate the microbiological attributes and microbial diversity 
of the soil after the interruption of the PS application. The PS rates were 0, 30 and 60 m3 ha-1 yr-1 and in 2016 the plots 
were divided and the PS application was stopped in half of the plot, generating the factorial scheme 2 × 2, being two PS 
rates (30 and 60 m3 ha-1 yr-1) and two application conditions (continuous or interrupted). Two soil samples were taken at 
5 and 12 mo after interruption. The PS interruption reduced the microbial biomass C (MBC) by 5% and 14% after 5 and 
12 mo, respectively. Microbial biomass N (MBN) was reduced too by 32% and 29% due to the PS interruption. The soil 
basal respiration (SBR) decreased when PS application was interrupted. The metabolic quotient (qCO2) did not change 
with the PS interruption but was high in the 60 m3 ha-1 yr-1. The bacteria and archaea genetic profiles showed similarity 
above 69% between continuous and interrupted applications. The bacterial diversity and richness index were higher than 
those found for fungal and archaeal communities. In contrast, the interruption had a strong effect on the soil fungi, which 
had diversity reduced due to the increase of the species dominance. The PS interruption up to 12 mo has an effect on the 
biomass, diversity, and activity of the microorganisms.
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INTRODUCTION

In the world pork market, Brazil is in fourth place as the largest producer, totaling in 2018 3.9 million tons of meat, with the 
southern region of Brazil responsible for 68% of the total pigs slaughtered in the country (ABPA, 2019). Pig production 
is predominantly performed in a confinement system, which makes the liquid form of manure the most representative, 
called pig slurry (PS) (Balota et al., 2014). It is estimated that the PS average volume produced by a pig in the growing 
and finishing phase is 4.5 L d-1 (3.5 L feces and urine and 1 L water for cleaning stalls) (Oliveira et al., 2007), thus, as 
44.2 million pig were slaughtered in 2018 (IBGE, 2019), it is estimated that the volume of PS generated was around 198 
million liters per day.
	 One of the alternatives for PS recycling is the use as organic fertilizer as it can provide essential nutrients to plants, 
increase the soil organic matter (SOM) content (Plaza et al., 2004; Couto et al., 2013) and enable greater activity and 
diversity of microorganisms (Marschner et al., 2003; Balota et al., 2014; Li et al., 2015; Navroski et al., 2019). Authors 
have observed that the use of organic fertilizers increased the diversity of microorganisms compared to mineral fertilizers 
or without fertilizer (Zhen et al., 2014; Li et al., 2015; Faissal et al., 2017). 
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	 Nevertheless, the transporting cost of PS to distant areas is high what restricts its use and makes its application in 
large quantities and for long period mostly in the same area (Oliveira et al., 2007), becoming thus an environmental risk 
factor, as it modifies the chemical, physical and biological soil properties, due to salt accumulation, heavy metals and the 
possibility of introducing pathogenic organisms.
	 Studies have shown that microorganisms, as well as plants and animals, develop adaptations to survive in the 
environmental conditions in which they are exposed (Kavamura et al., 2013). In soil, the intensity of management, 
cultivation of different plants, and fertilizers can cause disturbances and, consequently, select certain microbial groups 
(Andreote and Cardoso, 2016) that have the ability to remain in the environment even with change. In this case, there is 
a reduction in diversity that compromises its functionality.
	 Knowing that frequent PS applications can cause disturbances in the soil, one alternative would be to reduce the 
number of annual applications or the applied rate. However, the interruption of PS has yet to be studied. In this context, 
the hypothesis of the study is that the interruption of PS application modifies the microbiota on a structural and functional 
scale, which can be verified through the variety of attributes such as microbial biomass C and N (MBC and MBN), soil 
basal respiration (SBR), and 16S and 18S rDNA gene diversity. Therefore, the objective was to evaluate the effect of 
interruption of PS application in an area with 28 yr of manure on microbiological attributes and genetic diversity of the 
microbial community.

MATERIALS AND METHODS

The experimental area was established in 1988 at Experimental Station of the Paraná Institute of Agronomy (IAPAR), 
located in Palotina (24°17’ S, 53°50’ W), Paraná State, Brazil. The experimental area consisted of plots with 9.0 × 5.0 m (45 
m2), arranged in a randomized block design with three replicates. The area was managed under no-tillage system (NT) with 
soybean (Glycine max [L.] Merr.) or maize (Zea mays L.) rotation in the summer crop and with wheat (Triticum sativum 
Lam.) or oat (Avena sativa L.) in the winter crop. In 2016, the plots were divided (except the control), and PS application 
in half the plot was interrupted, generating the 2 × 2 factorial arrangement, with two PS rates (30 and 60 m3 ha-1 yr-1) and 
two application conditions (continuous or interrupted). The last PS application in the whole plot was performed in May 
2016, thenceforth the PS addition was stopped on half plot to perform soil sampling, which occurred in the summer pre-
cultivation (SPC) in October 2016 and the other in the winter pre-cultivation (WPC) in May 2017, corresponding to 5 and 
12 mo after the interruption of the PS application.
	 The soil was classified as a typical dystroferric red latosol (dos Santos et al., 2018) (Oxisol, according to the USDA 
Soil Taxonomy; USDA, 1999) with 695.4 g kg-1 clay, 134.2 g kg-1 silt and 170.4 g kg-1 sand content. The samples were 
composed of three soil subsamples in each of the three replicates from the treatment and collected at the 0.0-0.1, 0.1-0.2 
and 0.2-0.4 m depths. For more information about experimental design, soil sampling and soil chemical attributes, see 
Navroski et al. (2019).

Microbiological analyses
The soil samples were homogenized, sieved through 4.0 mm, and stored at 7 ºC until evaluation. The humidity determination 
was performed by the gravimetric method. To determine the soil microbial biomass C (MBC) and microbial biomass N 
(MBN) we used the fumigation-extraction method (Jenkinson and Powlson, 1976) and for C and N extraction we used the 
procedure proposed by Vance et al. (1987). We used correction factor KC = 0.33 to calculate MBC (Sparling and West, 
1988) and KN = 0.54 to calculate MBN (Brookes et al., 1985).
	 Soil basal respiration (SBR) was determined by the method described by Jenkinson and Powlson (1976) and the 
metabolic quotient (qCO2) was obtained by the ratio between SBR per unit of soil MBC at incubation time, and the 
microbial quotient (qMIC) was calculated by the relationship between MBC and total organic C (TOC).

Soil DNA extraction and bacteria, archaea and fungi amplification
The total DNA extraction was performed on samples from depth 0.0-0.1 m using a soil DNA isolation kit (PowerMax, 
MO BIO Laboratories, QIAGEN, Venlo, The Netherlands) according to manufacturer’s instructions. 
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	 The amplification of the V6 region encoding the bacteria’s 16S DNAr gene was performed by 968F-GC and 1401R 
primers (Felske et al., 1996). The reactions were performed for a final volume of 50 μL containing 2.5 mM MgCl2, 5 μL 
10X buffer, 0.2 mM each dNTP, 0.4 mM each primer, 0.5 μL formamide, 5 DNA Taq polymerase, 4 μL total DNA (7 to 
15 ng) and ultrapure water. Amplification conditions were: 1 initial denaturation cycle at 94 °C for 4 min; 35 cycles of 
94 °C for 1 min, 56 °C for 1 min, 72 °C for 2 min and final extension of 72 °C for 10 min; and 4 °C for maintenance. 
	 For amplification of the Archea’s 16S DNAr gene fragment, the ARCH21F and ARCH958R primers were used (Moyer 
et al., 1998) and, later on in the second PCR (Nested), the ARCH340F-GC and ARCH519R primers were used (Ovreas et 
al., 1997). Both reactions were performed using 1.8 mM MgCl2, 5 μL 10 × 0.2 mM buffer from each dNTP, 0.2 mM from 
each primer, 2.5 DNA Taq polymerase units, 0.02 μL bovine serum albumin (BSA, 5 mg mL-1), 3 μL total DNA (7 to 15 
ng) and ultrapure water. The conditions for amplification were: 1 initial denaturation cycle for 5 min at 95 °C; 30 cycles of 
95 °C for 30 s, 53 °C for 30 s, 72 °C for 1 min and 1 final extension cycle for 6 min at 72 °C; and 4 °C for maintenance. 
	 The DNA fragments (16S gene) from bacteria and archaea were concentrated to final volume of 13 μL in Concentrator 
plus (Eppendorf, Hamburg, Germany). 
	 The bacteria and archaea amplification products (~ 400 ng) were subjected to denaturing gradient gel electrophoresis 
(DGGE) analysis (Model equipment: DGGEK-2401, CBS Scientific Company, San Diego, California, USA). We used 
a 6.0% polyacrylamide gel (acrylamide:bisacrylamide ratio, 37.5:1.0) with denaturing gradient from 25% to 60% to 
bacteria and 8% polyacrylamide gel with denaturing gradient of 20% to 65% to archaea. 
	 To the first PCR for 18S rDNA amplification (fungi) we used 0.2 mM EF4 (Anderson et al., 2003) and ITS4 (White et 
al., 1990) primers, 1.2 μL 10X buffer, 0.45 μL MgCl2, 0.25 mM each dNTP, 2.5 units Taq polymerase DNA, 3 μL total 
DNA (7 to 15 ng) and ultrapure water. The reaction was conducted under the following condition: 94 °C for 5 min (1 
cycle); 94 °C for 30 s, 55 °C for 30 s, 72 °C for 1 min and 30 s (34 cycles); 72 °C for 5 min (1 cycle); and maintenance 
temperature of 4 °C until removal. For the second PCR (nested), 3.0 μL first reaction product was mixed with 0.4 mM 
each dNTP, 0.75 mM MgCl2, 5.0 μL 10X buffer; 0.2 mM ITS1 primer (Gardes and Bruns, 1993) and 0.2 mM ITS2 
primer (White et al., 1990), 2.5 units Taq polymerase DNA and ultrapure water. The reaction conditions were: 1 initial 
denaturation cycle at 94 °C for 5 min; 34 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C 30 s and 1 final extension cycle at 
72 °C for 5 min. The maintenance temperature until removal was 4 °C. The second PCR products of fungi were subjected 
to DGGE analysis (Model equipment: DGGEK-2401, CBS Scientific Company, San Diego, California, USA) on 8% 
polyacrylamide gel (acrylamide:bisacrylamide ratio, 37.5:1.0) using a denaturing gradient of 35% to 60%. 

Statistical analysis and DGGE profiles 
Data were tested for adequacy of residues to a normal distribution by Shapiro-Wilk test and homoscedasticity by Bartlett 
test. The variables that showed no normality or homoscedasticity were transformed by the Box-Cox method and retested. 
Data were subjected to ANOVA and, when significant, rate effects and continuous and interrupted application were 
analyzed by Tukey test (P ≤ 0.05). Control treatment and continuous and interrupted rates were compared by Dunnet’s 
test (P ≤ 0.05). Statistical analyses were processed using R software version 3.3.2 (The R Foundation for Statistical 
Computing, Vienna, Austria). 
	 DGGE profiles were analyzed by the BioNumerics software version 6.6 (Applied Maths, Sint-Martens-Latem, 
Belgium). Positioning in the dendrogram was performed using the algorithm unweighted pair-group method with 
arithmetic mean (UPGMA) and the Jaccard coefficient with a tolerance index of 1%. With the DGGE band profiles, the 
Menhinick richness (S), Shannon diversity (H’) and Simpson dominance (D) indices were calculated according to the 
equations:
	
	
			 
where n is the number of bands in the DGGE profile; h is the intensity (i) of individual bands, and H is the total intensity 
of all bands in the profile.
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RESULTS AND DISCUSSION

Microbiological attributes
Interruption of PS application after 5 and 12 mo influenced soil microbiological attributes. The interaction between 
factors was significant for none of the attributes, but there was an effect of the isolated factors. At depth 0.0-0.1 m, the 
MBC of the interrupted application presented a reduction of 5% in SPC sampling and 14% in WPC sampling in relation 
to the continuous application (Table 1), showing that the soil microbiota responds to the lack of PS.
	 The soil microbial biomass under interrupted application was limited to using only nutrients and compounds that were 
in the soil from previous applications, so the MBC was lower. In the continuous application, the microbial biomass was 
not limited because it received PS and with it a labile C charge and other easily assimilable elements. As shown by Notaro 
et al. (2018), inputs and PS are used as a substrate by soil microorganisms. In addition, PS itself transfers a microorganism 
bulk to the soil that can result in increased MBC, as observed by Plaza et al. (2004).
	 Lalande et al. (2000) reported that the labile C of PS added to the soil surface is available to indigenous microorganisms 
as a source of energy and nutrients, so it is assumed that they develop without limitations. In contrast, zymogen 
microorganisms show growth spike in response to soil residue addition (Moreira and Siqueira, 2002). Therefore, as soil 
sampling was performed after 10 d of application, C biomass was higher in the continuous application.
	 In SPC sampling, the MBC also differed with the rates, showing up higher in 60 m3 ha-1 yr-1 (673.2 mg kg-1) and lower 
in 30 m3 ha-1 yr-1 (631.4 mg kg-1) (Table 1). 
	 At 0.1-0.2 m depth, the interrupted application showed a reduction on MBN of approximately 32% in SPC sampling 
and 29% in WPC sampling in relation to the continuous application. This fact is also attributed to the higher nutrient input 
from PS, as discussed above on MBC content. Balota et al. (2012) concluded that microbial biomass was enriched with 
N and P due to increasing rates of PS.

30 m3 ha-1 yr-1	 604.7*		  658.1*	 631.4b	 49.9		  57.3	 53.6a	 515.6*		  636.6*	 576.1a	 37.0		  52.3	 44.7a
60 m3 ha-1 yr-1	 668.7*		  677.8*	 673.2a	 64.8		  59.8	 62.3a	 581.2*		  637.2*	 609.2a	 40.8		  51.6	 46.2a
x̄ (A)	 636.7B		  668.0A		  57.4A		  58.5A		  548.4B		  636.9A		  38.9A		  51.9A	
0 m3 ha-1 yr-1		  360.4	  			   40.2	  			   304.8				    34.5	
CV, %			   2.6				    30.2				    5.2				    27.6

30 m3 ha-1 yr-1	 518.8*		  535.1*	 526.9a	 24.3		  34.7	 29.5a	 450.7*		  456.2*	 453.5a	 24.9		  38.9	 31.9a
60 m3 ha-1 yr-1	 533.9*		  548.5*	 541.2a	 29.8		  44.6*	 37.2a	 448.0*		  455.1*	 451.5a	 30.1		  38.9	 34.5a
x̄ (A)	 526.4A		  541.8A		  27.1B		  39.6A		  449.3A		  455.6A		  27.5B		  38.9A	
0 m3 ha-1 yr-1		  349.7	  			   24.6	  			   294.4	  			   33.9	
CV, %			   7.1				    19.4				    9.1				    19.8

30 m3 ha-1 yr-1	 369.3		  371.5	 370.4a	 22.0		  24.4	 23.2a	 336.9*		  398.0*	 367.5a	 18.1		  22.5	 20.3a
60 m3 ha-1 yr-1	 384.3		  397.9*	 391.1a	 41.3		  24.1	 32.7a	 338.3*		  400.2*	 369.2a	 18.9		  24.4	 21.6a
x̄ (A)	 376.8A		  384.7A		  31.6A		  24.3A		  337.6B		  399.1A		  18.5A		  23.4A	
0 m3 ha-1 yr-1		  293.8	  			   22.8	  			   219.6	  			   17.5	
CV, %			   7.5				    55.5				    2.6				    23.6

MBCRate (R) MBN

Lowercase letters in the column compare rates (30 and 60 m3 ha-1 yr-1) and uppercase letters in the column compare application. Equal letters do 
not differ significantly by the Tukey test (P ≤ 0.05). 
*Significant difference from the control treatment in relation to continuous and interrupted rates by Dunnet’s test (P ≤ 0.05).
Cont.: Continuous; Int.: interrupted; CV: coefficient of variation.

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Table 1. Microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) on a Typic Oxisol under pig 
slurry (PS) continuous application for 28 yr and interrupted for 5 mo (sampling in the summer pre-cultivation) 
and 12 mo (sampling in the winter pre-cultivation).

0.0-0.1 m

0.2-0.4 m 

0.1-0.2 m

Summer pre-cultivation sampling
MBC MBN

Winter pre-cultivation sampling

mg kg-1 mg kg-1 
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	 When the areas with continuous and interrupted applications were compared with the control treatment, there was 
difference in the three depths and for the two samplings. These differences were found in MBC content, which was 
smaller in control and higher in continuous or interrupted of 30 and 60 m3 ha-1 yr-1 (Table 1). This occurs in response to the 
availability of nutrients supplied to the microbial community by PS. The addition over 28 yr of easily degradable organic 
C sources, such as PS, stimulates biological activity compared to plots that do not receive the organic material application 
(Marschner et al., 2003).
	 In this study, the TOC content was significantly equal for all treatments (Table 2). This could demonstrate the importance of 
using faster indicators such as MBC and MBN since the PS interruption occurred up to 12 mo and according to Plaza et al. (2007), 
changes in TOC may take decades to appear because most of the organic matter is nonliving and relatively stable. 
	 The continuous and interrupted rates also did not differ regarding qMIC in the two samplings (Table 2), which 
shows that even after interrupting the PS application for 12 mo, the amount of soil organic matter (SOM) remained at 
a steady level. 
	 The RBS was altered as a function of the interruption and applied rates. At 5 mo after discontinuation (SPC sampling), 
SBR was reduced (depth 0.1-0.2 m) from 10.5 mg C-CO2 kg-1 d-1 to 8.6 mg C-CO2 kg-1 d-1 due to locking in the PS 
applying (Table 3). As for the rates, the SBR was higher at the rate 60 m3 ha-1 yr-1 in the layer 0.0-0.2 m, while in the 0.2-
0.4 m depth, the SBR was significantly equal for both factors.
	 In WPS sampling, the differences for SBR were verified only in layer 0.0-0.1 m, following the same tendency of the 
previous sampling. The SBR decreased from 13.1 to 8.4 mg C-CO2 kg-1 d-1 due to discontinuation of PS, showed up higher 
at 60 m3 ha-1 yr-1 compared to 30 m3 ha-1 yr-1 (Table 3). This can be attributed to the fact that the organic bulk is higher in 
the continuous application of 60 m3 ha-1 yr-1 that provides C easily degradable by the microbial biomass that releases more 
CO2 in the biodegradation process.

30	 18.7		  18.0	 18.4a	 3.2		  3.6	 3.4a	 18.7		  20.9	 19.8a	 2.8		  3.1	 2.9a
60	 18.5		  18.0	 18.3a	 3.6		  3.8	 3.7a	 19.7		  20.0	 19.8a	 3.0		  3.2	 3.1a
x̄ (A)	 18.6A		  18.0A		  3.4A		  3.7A		  19.2A		  20.4A		  2.9A		  3.1A	
0		  17.6	  			   2.1				    19.3	  			   1.6	  
CV, %			   9.8				    23.5				    6.1				    8.1

30	 13.1		  13.4	 13.2a	 4.0		  4.0	 4.0a	 12.5		  14.0	 13.2a	 3.7		  3.3	 3.5a
60	 12.3		  11.9	 12.1a	 4.4*		  4.6*	 4.5a	 13.5		  12.7	 13.1a	 3.3		  3.6	 3.4a
x̄ (A)	 12.7A		  12.6A		  4.2A		  4.3A		  13.0A		  13.4A		  3.5A		  3.4A	
0		  11.9	  			   3.0	  			   12.7	  			   2.3	  
CV, %			   4.3				    8.5				    5.9				    10.2

30	 9.2		  10.1	 9.7a	 4.0		  3.7	 3.9a	 7.8		  9.3	 8.5a	 4.4*		  4.3*	 4.3a
60	 9.8		  8.2	 9.0a	 4.1		  4.8*	 4.5a	 8.7		  8.2	 8.4a	 4.1*		  4.9*	 4.5a
x̄ (A)	 9.5A		  9.2A		  4.0A		  4.3A		  8.3A		  8.7A		  4.2A		  4.6A	
0		  9.3	  			   3.2	  			   8.7	  			   2.7	  
CV, %			   13.2				    13.4				    21.9				    18.3

Rate (R)

Lowercase letters in the column compare rates (30 and 60 m3 ha-1 yr-1) and uppercase letters in the column compare application. Equal letters do 
not differ significantly by the Tukey test (P ≤ 0.05). 
*Significant difference from the control treatment in relation to continuous and interrupted rates by Dunnet’s test (P ≤ 0.05).
Cont.: Continuous; Int.: interrupted; CV: coefficient of variation.

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Table 2. Total organic carbon (TOC) and microbial quotient (qMIC) on a Typic Oxisol under pig slurry (PS) 
continuous application for 28 yr and interrupted for 5 mo (sampling in the summer pre-cultivation) and 12 mo 
(sampling in the winter pre-cultivation).

0.0-0.1 m

0.2-0.4 m 

0.1-0.2 m

Summer pre-cultivation sampling Winter pre-cultivation sampling
TOC

g dm3 

qMIC

%

TOC

g dm3 

qMIC

%m3 ha-1 yr-1 
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	 According to Couto et al. (2013), the high labile C levels and low C:N ratio of PS stimulate soil microbial activity. 
While in the interrupted application, the soil had not received PS for 5 and 12 mo, in the continuous application, the soil 
received PS 10 d before sampling. According to Rochette et al. (2000), at least half of total CO2 emissions occur during 
the first week after the addition of manure to the soil. Plaza et al. (2007) evaluated SBR up to 120 d after PS application 
and observed that CO2 release peaks occurred in the first 14 d after PS application and stabilized after 30 d.
	 The qCO2 showed difference only in the SPC sampling as a function of rate factor and ranged from 0.2 to 
1.6 mg C-CO2 g-1 MBC h-1 at depth 0.0-0.1 m and 0.5 to 1.0 mg C-CO2 g-1 MBC h-1 at depth 0.1-0.2 m, at both depths was 
higher at 60 m3 ha-1 yr-1 PS rate and lower at 30 m3 ha-1 yr-1 following the same tendency as MBC and SBR (Tables 1 and 
3). The control treatment at some depths presented higher SBR (Table 3), which indicates high microbiological activity. 
However, when analyzing the data together, it is noted that the low MBC and high qCO2 indicate a lack of available 
substrate for growth and maintenance of microorganisms.
	 Plaza et al. (2004) and Balota et al. (2014) observed higher qCO2 values the lowest PS rates and discussed this fact due 
to abiotic soil conditions such as pH, differences in substrate accessibility by microorganisms and change in microbial 
community composition (Xu et al., 2017). In this study, the bacterial richness index (S) was higher than fungi (Figure 1), 
which may increase qCO2 due to the predominance of bacterial populations. This is corroborated by Dilly and Munch 
(1998) when noting that the reduction of qCO2 indicates that the proportion of r-strategists, that prefer easily degradable 
organic compounds, decreases in relation to the population of K-strategists, that are believed to utilize humic material and 
the fatty residues of cuticular waxes and cutins as substrates. Or even that, the fungal biomass is larger than the bacterial 
biomass, due to a higher substrate efficiency by fungi compared to bacteria (Ho et al., 2017).

30	 14.6		  22.2	 18.4b	 1.0*		  1.4*	 1.2b	 7.3		  11.3*	 9.3b	 0.6		  0.7	 0.6a
60	 25.1*		  26.5*	 25.8a	 1.6		  1.6	 1.6a	 9.5		  14.9*	 12.2a	 0.7		  1.0	 0.8a
x̄ (A)	 19.9A		  24.3A		  1.3A		  1.5A		  8.4B		  13.1A		  0.6A		  0.8A	
0		  16.5	  			   1.9	  			   4.8	  			   0.7	  
CV, %			   15.5				    14.9				    13.1				    27.1

30	 5.3*		  6.8*	 6.1b	 0.4*		  0.5*	 0.5b	 3.7		  3.3	 3.5a	 0.3		  0.3	 0.3a
60	 11.9		  14.1	 13.0a	 0.9*		  1.1*	 1.0a	 3.9		  3.4	 3.7a	 0.4		  0.3	 0.3a
x̄ (A)	 8.6B		  10.5A		  0.7A		  0.8A		  3.8A		  3.4A		  0.3A		  0.3A	
0		  13.9	  			   1.7	  			   3.0	  			   0.4	  
CV, %			   9.8				    15.6				    21.8				    23.9

30	 3.8*		  5.0*	 4.4a	 0.4*		  0.6*	 0.5a	 2.2		  1.7*	 1.9a	 0.3*		  0.2*	 0.2a
60	 4.1*		  5.1*	 4.6a	 0.4*		  0.5*	 0.4a	 2.1		  1.9*	 2.0a	 0.3*		  0.2*	 0.2a
x̄ (A)	 3.9A		  5.0A		  0.4A		  0.6A		  2.1A		  1.8A		  0.3A		  0.2A	
0		  9.4	  			   1.4	  			   3.3	  			   0.6	  
CV, %			   21.4				    23.6				    28.3				    28.7

Rate (R)

Lowercase letters in the column compare rates (30 and 60 m3 ha-1 yr-1) and uppercase letters in the column compare application. Equal letters do 
not differ significantly by the Tukey test (P ≤ 0.05). 
*Significant difference from the control treatment in relation to continuous and interrupted rates by Dunnet’s test (P ≤ 0.05).
Cont.: Continuous; Int.: interrupted; CV: coefficient of variation.

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Application (A)

Int. Cont. x̅ (R)

Table 3. Soil basal respiration (SBR) and metabolic quotient (qCO2) on a Typic Oxisol under pig slurry (PS) 
continuous application for 28 yr and interrupted for 5 mo (sampling in the summer pre-cultivation) and 12 mo 
(sampling in the winter pre-cultivation).

0.0-0.1 m

0.2-0.4 m 

0.1-0.2 m

Summer pre-cultivation sampling Winter pre-cultivation sampling
SBR

mg C-CO2 kg-1 d-1

qCO2

mg C-CO2 g-1 MBC h-1 

SBR

mg C-CO2 kg-1 d-1

qCO2

mg C-CO2 g-1 MBC h-1 m3 ha-1 yr-1 
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Genetic profiles of microbial community by DGGE
DGGE profiles revealed a high similarity between continuous and interrupted applications. For bacteria, it was observed 
that the interruption of PS had an effect on the profile of this group (Figure 2). In the SPC sampling, the similarity between 
60 m3 ha-1 yr-1 continuous and 60 m3 ha-1 yr-1 interrupted treatments was 89% and between 30 m3 ha-1 yr-1 continuous and 
30 m3 ha-1 yr-1 interrupted was 91%, and of these in relation to control (C) it was 62% (Figure 2).
	 In the WPC sampling, the similarity was 85% for treatment 60 m3 ha-1 yr-1 continuous and 60 m3 ha-1 yr-1 interrupted and 
93% for 30 m3 ha-1 yr-1 continuous and 30 m3 ha-1 yr-1 interrupted, and of these in relation to the control, the similarity was 
59% (Figure 2). Despite the fact that the soil did not receive PS for 12 mo, there was a high similarity between continuous 
and interrupted applications within rates, this is because the C and nutrients source used by the microorganisms was the 
same; therefore, stimulating the microorganisms equally because there is no diversity of substrates and according to the 
study developed by Souza et al. (2012) the soil bacterial communities structure is affected by cover vegetation due to the 
release of specific forms of C representing energy sources. 

Figure 1. Menhinick richness (S), Simpson dominance (D) and Shannon diversity (H ‘) index of bacteria, archaea and 
fungi in soil influenced by pig slurry (PS) continuous application for 28 yr and interrupted for 5 mo (sampling in the 
summer pre-cultivation, SPC) and 12 mo (sampling in the winter pre-cultivation, WPC).

C: Control, 0 m3 ha-1 yr-1; 30IN: 30 m3 ha-1 yr-1 rate with interrupted application; 30CO: 30 m3 ha-1 yr-1 rate with continuous application; 
60IN: 60 m3 ha-1 yr-1 rate with interrupted application; 60CO: 60 m3 ha-1 yr-1 rate with continuous application. 
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	 The control (C) was 62% similar to the other treatments in the SPC and 59% in the WPC (Figure 2). As the control 
never received PS, its microbiota was limited to using only the C of cultural residues that are deposited in the soil after 
harvest as an energy source, thus having less diversity of substrates.
	 The archaeal community profile was similar to observed for bacteria. The similarity between 30 m3 ha-1 yr-1 continuous 
and 30 m3 ha-1 yr-1 interrupted treatments was 96% in SPC and 93% in WPC (Figure 3) and for 60 m3 ha-1 yr-1 continuous 
and 60 m3 ha-1 yr-1 interrupted treatments was 100% in SPC and 92% in WPC (Figure 3). The control was similar in 85% 
in SPC and 60% in WPC with other treatments that received PS (Figure 3).

Figure 2. DGGE profiles of the bacterial community of a Typic Oxisol under pig slutty (PS) continuous application for 
28 yr and interrupted for 5 and 12 mo.

C: Control; 30IN: 30 m3 ha-1 yr-1 rate with interrupted application; 30CO: 30 m3 ha-1 yr-1 with continuous application; 60IN: 60 m3 ha-1 yr-1 with 
interrupted application; 60CO: 60 m3 ha-1 yr-1 and with continuous application; SPC: sampling in the summer pre-cultivation; WPC: sampling in 
the winter pre-cultivation.

C: Control; 30IN: 30 m3 ha-1 yr-1 rate with interrupted application; 30CO: 30 m3 ha-1 yr-1 with continuous application; 60IN: 60 m3 ha-1 yr-1 with 
interrupted application; 60CO: 60 m3 ha-1 yr-1 with continuous application; SPC: sampling in the summer pre-cultivation; WPC: sampling in the 
winter pre-cultivation.

Figure 3. DGGE profiles of the Archaea community of a Typic Oxisol under pig slurry (PS) continuous application for 28 yr 
and interrupted for 5 and 12 mo. 
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	 The fungi profile showed less similarity between treatments compared to bacteria and archaea (Figure 4). Unlike what 
occurred for the 16S profiles, for fungi, the PS interruption in SPC caused some effects. When establishing a cut at 70% 
similarity for forming clusters, three groups were formed in SPC (Figure 4). A group was formed by 60 m3 ha-1 yr-1 rate, 
continuous or interrupted, and by 30 m3 ha-1 yr-1 rate continuous, showing a similarity of 85%. Another two groups were 
formed by 30 m3 ha-1 yr-1 rate interrupted and the control, which were separated individually. This shows that the PS rate 
influenced the separation because the control and 15IN did not receive or received the least amount of PS, respectively.
	 In the WPC sampling, the fungi community profile was not the same as that found in SPC. The 30 m3 ha-1 yr-1 continuous 
and interrupted treatments showed 65% similarity, and for 60 m3 ha-1 yr-1 continuous and interrupted treatments, the 
similarity was 68%. Compared with the control, the similarity of these treatments was 41% (Figure 4). That is, based on 
the cut in 70% similarity, all treatments are isolated, showing that the fungi communities have a very different dynamic 
than archaea and bacteria. The difference between fungi profiles of SPC sampling and WPC can be explained by the 
vegetal cultural residues remaining the winter and summer harvests that may have modulated an uneven environmental 
condition that led to different responses and between SPC and WPC for the fungi group. Furthermore, the soil chemical 
and biological composition of PS can be very variable.
	 The control treatment (C) without PS, and the 30 m3 ha-1 yr-1 interrupted treatment had the lowest PS amount, so the 
fungi community profile was modified due the PS interruption up to 5 mo because in these plots there may have been a 
species selection that led to the prevalence of K-strategists when substrate availability is lower, corroborating Moreira and 
Siqueira (2002). This result is confirmed by the dominance index (D), which was higher in the control treatment (C) and 
30 m3 ha-1 yr-1 interrupted treatment in SPC sampling, in contrast to the diversity that was lower (Figure 1).
	 The differences in the SOM composition and the substrate availability may be one of the reasons for the differences 
in the microbial community structure, as generally readily decomposable compounds such as organic acids and 
carbohydrates are probably used mainly by soil bacteria, while fungi decompose the more recalcitrant and less soluble 
materials (Marschner et al., 2003). 
	 Marschner et al. (2003), when evaluating five organic and inorganic fertilizers for 31 yr, observed that the treatments 
had effects on the biomass and soil bacterial community structure, but there was no effect on the fungal community 
structure.

C: Control; 30IN: 30 m3 ha-1 yr-1 with interrupted application; 30CO: 30 m3 ha-1 yr-1 with continuous application; 60IN: 60 m3 ha-1 yr-1 with 
interrupted application; 60CO: 60 m3 ha-1 yr-1 with continuous application; SPC: sampling in the summer pre-cultivation; WPC: sampling in the 
winter pre-cultivation.

Figure 4. DGGE profiles of the fungal community of a Typic Oxisol under pig slurry (PS) continuous application for 28 yr 
and interrupted for 5 and 12 mo. 
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	 Considering the Shannon diversity index (H’), it was possible to observe that the microbial diversity was greater when 
PS was applied than in the control without application (Figure 1). This result corroborates Faissal et al. (2017), which 
showed that Shannon index was significantly higher in the soil fertilized with manure from poultry and cattle than in the 
reference soil (without fertilization) and with the study of Zhen et al. (2014), when concluding that the animal manure 
application can improve the genetic structure of the microbial community and the diversity in soils. Li et al. (2015) 
observed that both bacterial abundance and diversity were greater in mineral fertilizer + swine manure treatment than in 
non-fertilized soil treatment.
	 It was observed that PS application provided an increase in the microbial genetic diversity up to 30 m3 ha-1 yr-1, 
whereas the diversity decreased in 60 m3 ha-1 yr-1 rate. It is possible that this occurred due to a selection of anaerobic 
microorganisms in detriment to aerobic ones. PS presents a high biochemical oxygen demand, and when applied to the 
soil, it tends to reduce the partial pressure of O2 in the soil atmosphere, favoring anaerobic microorganisms. Associate to 
this, the high amount of rain during the application period until the soil sampling (65 mm in SPC sampling and 69 mm in 
WPC sampling) further reduced the available O2 in the soil. Lalande et al. (2000) comment that high PS rates can create 
temporary anaerobic zones in the soil.

CONCLUSIONS

The pig slurry (PS) interruption up to 5 and 12 mo after 28 yr of continuous application causes a decrease in microbial 
biomass C and N and a reduction in the microbiological activity measured by basal soil respiration. 
	 The bacterial and archaeal community structures are less affected by the PS interruption than the fungal community, 
which had its diversity reduced due to the increased dominance of some species.
	 The PS application increase microorganism’s diversity, especially at the 30 m3 ha-1 yr-1 rate, even after 12 mo of PS 
interruption and the less diversity was found in the control treatment that never received PS.
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