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ABSTRACT

Soil deterioration, yield decline and soil microbial activity reduction caused by banana (Musa × paradisiaca L.) monoculture 
is threatening the sustainability of banana production in China. Therefore, it is necessary to study the benefits of rotation 
on soil quality. This study aimed to assess the effects of rotation and tillage on soil properties in a banana plantation for 
25 yr. Treatments consisted of three rotation methods (banana-pineapple, BA; banana-cowpea, BP; banana-rice, BR) and 
banana monoculture (CK) combined with two tillage intensities (no-tillage, NT; conventional tillage, CT). Soil samples 
were taken at depth of 0-40 cm in 2019-2020. In comparison with CK, BA and BR increased soil moisture, pH, total 
organic C and available P, but decreased soil bulk density. Microbial biomass C and N at booting stage were 46.1% and 
39.2% higher in BA and BR than those in CK. Urease, dehydrogenase and β-glucosidase obtained a mean of 34.1% 
increase in BP and 23.8% increase in BR compared with BA. Higher total N, NO3-N, available K and macroaggregate 
were showed in NT compared with CT, whereas porosity was 24.8% lower in NT than in CT. CO2, N2O and CH4 emissions 
were in average around between one third and two fifth lower in no-tillage compared with conventional tillage. In general, 
rotations combined with no-tillage led to a positive effect on soil quality, as evidenced by increase of soil moisture, total 
N, microbial biomass C and urease and accompanying increase in banana yield. In order to sustain higher productivity, 
application of rotation and no-tillage is of considerable importance.
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INTRODUCTION

Rotation, no-tillage and crop residue addition greatly improve soil quality, mainly including soil physicochemical 
and biological properties (Shiwakoti et al., 2019). These practices finally increase crop yield and reduce greenhouse 
gas emissions (Zuber et al., 2017). For example, rotation potentially improves soil structure and density, decreases 
acidification and increases nutrient availability (Deuschle et al., 2019). No-tillage involving surface crop residue 
application has been adopted as a means to promote organic matter storage (He et al., 2020a), which often results in 
greater soil bacteria biomass and abundance. Meanwhile, no-tillage separates soil organic C (Xavier et al., 2019) and 
thus to ameliorate CO2 emissions. 
 Soil microbial properties, such as microbial biomass and enzymes have been suggested as potential indicators for soil 
quality evaluation because they are involved in soil organic matter decomposition, C sequestration and nutrient availability 
(Legrand et al., 2018). Furthermore, they are easy to measure (easily adopted for routine laboratory testing), response 
rapidly to slight changes in less tillage and temporary changes originated by crops rotation. Actually, soil physicochemical 
and microbial parameters are mutually dependent. Many researchers pointed out that changes in microbial attributes 
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with rotation and tillage should provide practical tools to complement physicochemical test (He et al., 2019) and, thus, 
evaluate the effects of conservation tillage.
 With the decrease of per capita arable land area and the increase of cropping intensity, agricultural lands throughout the 
tropical region are being degraded. Conservation tillage such as integration of no-tillage and residue return into banana-
based rotation systems has been proposed as a promising management option to support fruit productivity (Zhong and 
Zeng, 2020), reduce soil degradation and improve nutrient mineralization in tropical climate. Soil enzymatic activities and 
microbial biomass as integrative indicators of soil degradation had been assessed in monoculture combined with intensive 
tillage systems in subtropical climate (Mu et al., 2016), and were shown to be positively affected by conservation tillage 
practices in short-term studies (Yang et al., 2018). For example, long-term conventional tillage decreased soil enzymes 
(Bera et al., 2018) and 2 yr tobacco-based rotation increased soil bacterial biomass (Brandan et al., 2017). However, we 
are uncertain if there will be differences in these soil properties after long-term conservation tillage, especially under 
tropical fruit plantations. Therefore, the current study measured selected soil quality characters such as soil microbial 
biomass C and N, enzymatic activities and greenhouse gas emission involved in C and N cycling after 25 yr in banana-
pineapple, cowpea and rice rotation compared to a 25 yr banana monoculture under no- and conventional tillage. 

MATERIALS AND METHODS

Site descriptions
The experiment was carried out on the Ledong Experimental Station (18°36’39.2” N, 108°47’54.9” E), Chinese Academy 
of Tropical Agricultural Sciences since 1994. Climate of the region is tropical monsoon. Average annual temperature is 
25.8 ℃ and average annual precipitation is 2065 mm. The test soil is aquic Cambisol (13.6% clay, 23.1% silt and 63.3% 
sand) according to the USDA texture classification; 7.12 g kg-1 total organic C, 0.76 g kg-1 total N, 0.59 g kg-1 total P, 
1.21 g kg-1 total K and pH 6.53. Soil moisture, bulk density, porosity, water-stable aggregates (macroaggregate WSA1, 
microaggregate WSA2) were evaluated.
 The experiment was a split-plot design with four replicates. Rotation management was the main plot and tillage system 
was the split-plot factor. Details of the treatments are showed in Table 1. The text field was divided into 32 plots and size 
of each plot was 80 (10 × 8 m) m2. Rotation treatments were banana (Musa ×paradisiaca L.)-pineapple (Ananas comosus 
[L.] Merr. var. comosus) rotation (BA), banana-cowpea (Vigna unguiculata [L.] Walp.) rotation (BP), banana-rice (Orysa 
sativa L.) rotation (BR) and banana monoculture (CK). Tillage treatments were no-tillage (NT) and conventional tillage 
(CT). Each year, cow biochar compost (14.4 t ha-1), with 53.3% water content, 145 g C kg-1, 3.2 g N kg-1, 2.5 g P2O5 kg-1, 
1.6 g K2O kg-1, were applied as basal fertilizer. Urea, superphosphate and sulfate were applied as additional fertilizer at 
129 kg N ha-1, 68 kg P ha-1 and 292 kg K ha-1. CT plots were moldboard ploughed to 40 cm depth every year. NT plots were 
undisturbed, except when the crop was planted using a NT planter (2BQ-6, Kinze, Williamsburg, Iowa, USA). Residues 
were incorporated into soil in CT and covered soil surface in NT after harvest. 

Soil sampling
Soil samples were taken from 0-40 cm depth at seedling stage (19 September 2019), jointing stage (18 December 
2019), booting stage (15 March 2020) and ripening stage (17 May 2020) within the rows of banana for physicochemical 
properties, microbial biomass and enzymes analysis. Each sample was a composite comprising five random cores (2.5 cm 
diameter). The fresh samples were sieved through a 2 mm mesh and stored at 4 ℃ before subsequent analysis. Results 
were based on oven-dried weight of the soil. 

Table 1. Description and site history of different treatments in the study area of a long-term crop rotation experiment.

Monoculture (CK) Banana June 1995-May 2020
Rotation 1 (BA) Banana and pineapple Banana: June 1995-May 2000, June 2005-May 2010, and June 2015-May 2020
  Pineapple: June 2000-May 2005 and June 2010-May 2015
Rotation 2 (BP) Banana and cowpea  Banana: June 1995-May 2000, June 2005-May 2010, and June 2015-May 2020
  Cowpea: June 2000-May 2005 and June 2010-May 2015
Rotation 3 (BR) Banana and rice Banana: June 1995-May 2000, June 2005-May 2010, and June 2015-May 2020 
  Rice: June 2000-May 2005 and June 2010-May 2015

In each rotation and monoculture plot, a no-tillage and a conventional tillage treatment were applied. 

CropsTreatment Planting year
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 Soil physical and chemical properties were measured according to Kubar et al. (2018) and Hulugalle et al. (2007), 
respectively. Soils were weighed wet, oven-dried at 105 °C for 8 h, then weighed again to calculate soil moisture, bulk 
density and porosity. Soil water-stable aggregates were determined by the wet sieving method. Soil pH was measured in 
1:4 soil:water suspension with glass electrode. Total N, NH4-N and NO3-N were determined using micro-Kjeldahl method. 
Total organic C was analyzed by dry combustion, using a total organic C analyzer (TOC 5000 total C analyzer; Shimadzu 
Corporation, Kyoto, Japan). After nitric-perchloric acid digestion, available P was determined by molybdenum-blue 
complex method; available K was analyzed by flame atomic absorption spectrometry; exchangeable Ca and exchangeable 
Mg were determined by atomic absorption spectrophotometry.
 Urease, acid phosphatase, and dehydrogenase were determined based on the method of Tabatabai (1994). For urease, 5 g 
soil were incubated with 10 mL 10% urea solution for 24 h at pH 7.0 at 37 ℃; for acid phosphatase, 1 g soil was incubated 
with the p-nitrophenyl phosphate substrate for 1 h at pH 6.5 at 37 ℃; for dehydrogenase, 6 g soil were incubated with 5 
mL 3% triphenyltetrazolium chloride for 24 h at pH 7.5 at 37 ℃. Invertase, β-glucosidase and catalase were estimated 
according to the method of Notaro et al. (2018). For invertase, 5 g soil were incubated with 15 mL 8% sucrose solution 
for 24 h at pH 5.5 at 37 ℃; for β-glucosidase 1 g soil was incubated; and for catalase, 2 g soil were incubated with 5 mL 
0.3% H2O2 for 30 min at pH 7.0 at 30 ℃. When their interactions were significant, individual comparisons were based on 
p-nitrophenyl-β-D-glucopyranoside substrate for 1 h at pH 6.0 at 37 ℃. Enzymes were determined in fresh soil and based 
on the oven-dried soil weight.
 Soil microbial biomass was measured by the chloroform fumigation-extraction method (Vance et al., 1987). Greenhouse 
gas emissions were measured every 40 d after crops transplanting; CO2, NO2 and CH4 emissions were measured by non-
steady state flow-through chambers (da Vitória et al., 2019). The chamber (0.5 m × 0.5 m × 2.0 m) with water groove on 
the top edge, was randomly installed into each plot to a 20 cm soil depth between two rows of bananas. A rubber stopper 
with a 3-way stopcock was placed in the wall of each chamber to take gas samples. Samples were analyzed by gas 
chromatography (HP-6890 gas chromatograph) equipped with a headspace autoanalyzer (HT3) (Agilent Technologies, 
Barcelona, Spain). Banana yield (t ha-1) was estimated based on bunch weights, mat spacing, and average crop cycle 
duration (i.e., time between two subsequent harvests from the same mat) as used by Wairegi and van Asten (2010) in the 
same plots.

Statistical analysis 
The genera linear model (GLM) for split-plot design was used to test the overall effect of rotation, tillage and sampling 
stage on soil microbial qualities and physicochemical properties. Separate one-way ANOVA was used to test the effects 
of rotation and tillage on soil microbial properties and environmental parameters at each sampling stage. The mean 
comparisons were based on an independent-samples T test. Linear correlation was used to characterize the relationship 
between physicochemical-microbiological parameters and greenhouse gas. All statistical analyses were performed by 
SPSS statistical software (SPSS Inc., Chicago, Illinois, USA). Difference at P < 0.05 level was considered significant.

RESULTS

Soil physicochemical property
Compared with monoculture, rotations significantly increased (P < 0.05, Figure 1 and Table 2) almost all of the soil 
physicochemical properties, but decreased (P < 0.01) bulk density at the 3rd and 4th stage. For rotation treatments, BA had 
the lowest total soil organic C and available P; BP had the highest porosity, available K and exchangeable Ca; BR had the 
highest NH4-N and exchangeable Mg. Soil moisture, pH, total soil organic C, total N, NO3-N and exchangeable Mg were 
on average 39.4% higher in no-tillage compared with conventional tillage.
 The amounts of macroaggregates (W1-W4) were significantly higher than that of microaggregates (W5) in all treatments 
at the 2nd and 3rd stage (P < 0.01). The amounts of W2, W3 and W4 followed the range of CK < BA < BP < BR. Higher W5 
were found in NT than in CT (P < 0.05, Table 3).
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Figure 1. Soil chemical properties in rotation and tillage treatments at four sampling stages in a long-term crop 
rotation experiment.

Error bars indicate coefficient of variation. Different letters mean significant difference according to Duncan’s multiple range test (P < 0.05).
BA: Banana-pineapple rotation; BP: banana-cowpea rotation; BR: banana-rice rotation; CK: banana monoculture; NT: no-tillage; 
CT: conventional tillage.

Soil moisture, % 1st 17.2(1.6)d 19.2(1.7)d 22.8(2.1)c 24.9(2.2)c 26.8(2.4)b 29.5(2.6)a 28.1(2.5)ab 30.4(2.7)a
 2nd 19.1(1.8)c 21.9(1.9)c 24.3(2.2)b 26.5(2.4)b 30.7(2.7)a 31.6(2.9)a 31.8(2.8)a 33.1(3.1)a
 3rd 23.4(2.2)c 26.8(2.4)b 28.4(2.6)b 30.6(2.8)ab 32.9(3.0)a 33.4(3.1)a 34.6(3.2)a 35.9(3.3)a
 4th 21.7(2.0)d 24.6(2.2)c 27.8(2.5)c 28.8(2.6)bc 31.5(2.8)b 32.2(3.0)ab 33.3(3.1)a 34.7(3.2)a

Bulk density,  1st 1.37(0.13)b 1.51(0.14)a 1.28(0.12)c 1.41(0.13)a 1.32(0.13)b 1.46(0.14)a 1.25(0.12)c 1.39(0.13)ab
g cm-3 2nd 0.94(0.09)b 1.34(0.13)a 0.88(0.08)c 0.93(0.09)b 0.91(0.09)bc 1.06(0.09)b 0.82(0.07)c 0.85(0.07)c
 3rd 1.09(0.11)a 1.17(0.12)a 1.00(0.09)b 1.02(0.10)b 0.88(0.08)c 0.92(0.09)c 0.93(0.08)b 0.90(0.08)c
 4th 1.13(0.12)a 1.25(0.13)a 0.99(0.09)c 1.07(0.11)b 1.03(0.10)b 1.11(0.11)a 0.95(0.09)c 0.98(0.09)c

Porosity, % 1st 44.4(4.2)c 40.2(3.8)d 48.3(4.5)b 46.7(4.4)bc 55.5(5.3)a 51.0(4.8)ab 53.3(4.8)a 47.9(4.5)b
 2nd 54.3(5.3)c 52.6(5.1)c 61.1(5.9)b 62.3(5.8)ab 67.0(6.3)a 65.9(6.2)a 63.7(6.1)a 60.0(6.0)b
 3rd 57.8(5.5)b 56.3(5.2)c 61.8(5.8)a 58.7(5.6)c 63.6(6.1)a 62.5(6.0)a 60.4(6.0)a 59.5(5.9)ab
 4th 51.7(5.1)c 50.5(4.9)c 58.4(5.7)a 53.0(5.1)b 60.4(5.9)a 57.4(5.8)a 56.6(5.7)a 53.8(5.6)b

Yield, t ha-1  18.1(3.2)d 24.2(3.7)d 35.9(4.0)c 40.4(4.2)c 44.9(4.7)b 50.8(5.0)a 41.7(4.5)bc 48.6(4.6)b

Table 2. Soil physical properties and banana yield in rotation and tillage treatments at four sampling stages in a long-
term crop rotation experiment.

CK

Sampling CT NT

BA

CT NT

BP

CT NT

BR

CT NT

Values represented in the table are means across replicates of each plot. Coefficients of variation are in parentheses.
CK: Banana monoculture; BA: banana-pineapple rotation; BP: banana-cowpea rotation; BR: banana-rice rotation; CT: conventional tillage; 
NT: no-tillage. 

Indicators
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Soil biochemical property
Microbial biomass C (MBC), urease (UA), β-glucosidase (GA) and dehydrogenase (DHA) were significantly higher 
(P < 0.01, Table 4) in the treatments NT than in CK-CT. Microbial biomass N (MBN), invertase (IA), DHA and acid 
phosphatase (APA) were on average 42.1%, 47.9% and 36.7% higher in BA, BP and BR compared with CK, respectively. 
Average MBN and catalase (CA) were 28.1% and 39.6% higher in NT compared with CT (Figure 2). At the booting stage, 
MBC, MBN and DHA were much higher than those at other stages.

Greenhouse gas emissions 
Peaks of N2O (NE) and CO2 (CE) emissions in rotation and tillage were detected at 200 and 240 d followed by 160, 280 
and 320 d, while 40 and 80 d had the lowest emissions (Figure 3). Average CE ranged from 11.8 to 31.9 μmol m-2 s-1, 
with the following order: BP < BR < BA < CK; average NE ranged from 14.9 to 38.1 μmol m-2 s-1, with the following 
order: BR < BP < BA < CK; average CH4 emissions (ME) ranged from 10.5 to 25.7 μmol m-2 s-1, with the following 
order: CK < BA < BP < BR. Average CE, NE and ME were 36.5% lower in NT compared with CT.
 Microbial biomass C was positively correlated with total organic C (P < 0.05, Table 5) and negatively correlated with 
bulk density (P < 0.01). Urease was positively correlated with NO3-N (P < 0.05). CH4 emissions were positively correlated 
with exchangeable Mg and macroaggregate (P < 0.01).

Banana yield
Rotation effect was significant on banana yields (P < 0.05, Table 2). The average banana yields in BA, BP and BR were, 
respectively, 41.6%, 58.7% and 49.9% higher than those in CK, and 23.3% increase was observed in no-tillage compared 
with conventional tillage (Table 2).

> 5 mm (W1) 1st 78.9(8.5)d 107.4(11.6)d 122.0(13.1)c 150.4(16.2)b 143.9(15.5)bc 156.7(16.7)ab 134.8(14.5)c 160.2(17.2)a
 2nd  90.4(9.7)e 123.5(13.3)d 138.9(14.9)d 170.6(18.3)b 158.1(17.0)c 175.3(18.9)b 165.7(17.8)bc 189.9(20.4)a
 3rd  132.7(14.3)d 151.3(16.4)c 166.7(17.9)c 198.8(21.5)b 189.6(20.4)b 219.6(23.7)ab 210.4(22.6)b 223.5(24.0)a
 4th 119.1(12.8)d 140.2(15.1)c 149.8(16.2)c 182.9(19.7)b 173.4(18.6)b 200.5(21.7)a 184.5(19.8)b 215.6(23.2)a

5-3 mm (W2) 1st 163.6(17.7)e 186.1(20.0)d 219.5(23.6)c 240.8(25.9)b 230.7(24.8)b 272.9(29.3)a 259.9(27.9)ab 283.4(30.5)a
 2nd  178.4(19.2)d 194.7(20.9)d 231.4(24.8)c 262.7(28.3)b 250.9(27.0)bc 283.7(30.5)a 271.2(29.2)ab 299.8(32.2)a
 3rd  212.7(22.9)e 226.6(24.4)d 270.0(29.0)c 301.9(32.5)b 278.8(30.0)c 317.5(34.1)a 315.7(33.8)a 324.6(34.9)a
 4th  201.8(21.7)d 207.5(22.3)d 254.6(27.4)c 273.2(29.8)c 266.2(28.6)c 300.3(32.4)ab 291.0(31.3)b 307.8(33.1)a

3-1 mm (W3) 1st 214.5(23.1)d 229.4(24.7)c 236.9(25.5)c 257.2(27.6)c 289.3(31.1)b 314.6(33.8)a 292.5(31.5)b 318.7(34.3)a
 2nd  221.1(23.8)d 248.3(26.6)c 244.5(26.3)c 280.9(30.2)bc 302.6(32.5)b 330.2(35.5)ab 305.4(32.7)b 341.9(36.7)a
 3rd  255.4(27.5)e 276.8(29.9)d 287.8(30.9)c 310.5(33.4)c 327.1(35.3)bc 360.3(38.7)ab 340.1(36.6)b 374.1(40.2)a
 4th  233.2(25.2)d 261.9(28.2)c 269.7(29.0)c 298.7(32.1)bc 316.3(34.2)b 349.5(37.6)a 329.6(35.4)b 353.4(38.0)a

1-0.25 mm (W4) 1st 320.6(34.6)e 369.5(39.7)d 398.4(42.8)cd 407.3(43.8)c 435.5(46.9)bc 478.6(51.4)b 460.0(49.5)b 500.8(53.8)a
 2nd  335.9(36.3)e 384.2(41.3)d 400.6(43.1)c 422.2(45.4)c 453.2(48.6)b 502.7(54.1)a 477.5(51.2)b 516.7(55.6)a
 3rd  357.7(38.4)e 421.7(45.3)d 440.3(47.3)d 457.8(49.2)cd 484.4(52.1)c 539.4(58.0)ab 514.8(55.4)b 553.5(59.5)a
 4th  344.8(37.1)e 395.6(42.5)d 428.9(46.2)c 436.1(46.9)c 469.7(50.5)bc 523.2(56.5)ab 495.4(53.3)b 540.9(58.4)a

< 0.25 mm (W5) 1st 362.3(39.0)e 390.1(41.9)d 430.2(46.4)c 451.9(48.6)c 486.8(52.3)ab 520.5(56.0)a 479.3(51.6)b 525.6(56.5)a
 2nd  388.5(41.8)e  410.8(44.2)d 439.5(47.2)c 465.6(50.1)bc 499.9(53.8)b 531.1(57.3)a 490.9(52.8)b 549.2(59.1)a
 3rd  416.5(44.9)d 444.4(47.8)d 472.1(50.7)c 506.7(54.5)bc 536.6(57.7)b 559.8(60.2)a 521.7(56.1)b 578.4(62.2)a
 4th  404.0(43.4)e  426.3(45.8)d 457.7(49.6)c 480.4(51.7)bc 511.5(55.0)b 546.9(58.8)ab 507.2(54.5)b 567.3(59.9)a

Table 3. Size classes of soil water-stable aggregates (WSA) in rotation and tillage treatments at four sampling stages in 
a long-term crop rotation experiment.

CK

Sampling CT NT

BA

CT NT

BP

CT NT

BR

CT NT

Values represented in the table are means across replicates of each plot. Coefficients of variation are in parentheses.
CK: Banana monoculture; BA: banana-pineapple rotation; BP: banana-cowpea rotation; BR: banana-rice rotation; CT: conventional tillage; 
NT: no-tillage. 

WSA (g kg-1)
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DISCUSSION

Effects of rotation on soil quality
pH increased 0.89 units in the rotations compared with monoculture, which is in agreement with the results of Dasa 
et al. (2018). These results suggest that root exudates of pineapple, cowpea or rice mitigate soil acidification. Total N 
and NO3-N were much higher in BA than in CK, which were consistent with our previous studies (Zhong and Zeng, 
2019). The differences were due to larger root quantity in rotations decreasing percolation water with N nutrients than in 
monoculture (Belmonte et al., 2018). AP and AK were on average 34.6% higher in BA and 43.7% higher in BP than in 
CK. Other researchers found similar results (Xu et al., 2020). They suggested that soil pH maintaining neutral range in 
rotations prevents P and K from fixation. 
 Urease, invertase, dehydrogenase and β-glucosidase obtained a mean of 51.7% increase in BP and 40.2% increase in 
BR compared with CK. These results were consistent with those of previous studies (Singh et al., 2018) that soil enzymes 
were stimulated by various crop sequences. The possible reason is that compared with monoculture plots, rotation plots 
have improved soil structure (Yang et al., 2020), stabilized microclimate (Adegaye et al., 2019) and greater abundance 
of rhizospheric microbes (mainly including rhizobia, gram-negative bacteria and Pseudomonas). Rotations emitted large 
amounts of CH4 to atmosphere, especially flooding rice cultivation. Pareja-Sánchez et al. (2019) reported similar findings. 
In their view, soil moisture and Fe2+ in BR were significantly higher than those of less irrigated treatments, thus increasing 
the abundance of methanogenesis.

SM <0.01 < 0.01  ns < 0.01      0.037 ns ns
BD < 0.01 < 0.01 < 0.01    ns < 0.01 ns ns
PO 0.044 0.019 < 0.01      0.043 ns 0.048 ns
WSA1 < 0.01 < 0.01 ns ns ns ns 0.020
WSA2 < 0.01 0.031     0.049 ns ns ns 0.024
pH < 0.01 < 0.01 ns      0.018 ns ns ns
SOC < 0.01 < 0.01 ns < 0.01 ns ns ns
TN < 0.01 < 0.01 < 0.01 < 0.01 ns ns ns
NH4-N < 0.01 0.049 < 0.01 ns ns ns ns
NO3-N < 0.01 < 0.01 < 0.01 < 0.01 ns ns ns
AP < 0.01 < 0.01 ns      0.016 ns ns ns
AK 0.042 < 0.01 < 0.01 0.033 < 0.01 ns ns
ECa < 0.01 0.039 ns ns ns ns ns
EMg < 0.01 ns ns ns ns ns ns
MBC < 0.01 < 0.01 < 0.01 ns ns ns ns
MBN < 0.01 < 0.01 < 0.01 ns 0.047 ns ns
UA < 0.01 < 0.01 < 0.01 ns ns ns ns
IA < 0.01 < 0.01 < 0.01 0.023 ns ns ns
DHA < 0.01 < 0.01 < 0.01 ns ns ns ns
APA < 0.01 0.022 ns ns ns ns ns
GA < 0.01 < 0.01 < 0.01 ns < 0.01 ns ns
CA < 0.01 < 0.01 < 0.01 ns ns ns ns
NE 0.026 0.013 0.027 ns 0.014 ns ns
CE 0.017 < 0.01 0.031 ns ns ns ns
ME < 0.01 < 0.01 < 0.01 < 0.01 ns ns ns
Yield < 0.01 < 0.01 < 0.01 0.029 ns ns ns

Table 4. Two-way ANOVA table of P values showing the significance of the effects of different crop rotation and tillage practices 
on soil properties in a long-term crop rotation experiment.

Rotation (R)

SM: Soil moisture; BD: bulk density; PO: porosity; WSA1: water-stable macroaggregate; WSA2: water-stable 
microaggregate; SOC: soil total organic C; TN: total N; AP: available P; AK: available K; ECa: exchangeable 
Ca; EMg: exchangeable Mg; MBC: microbial biomass C; MBN: microbial biomass N; UA: urease activity; IA: 
invertase activity; DHA: dehydrogenase activity; APA: acid phosphatase activity; GA: β-glucosidase activity; 
CA: catalase activity; NE: N2O emission; CE: CO2 emission; ME: CH4 emission; ns: nonsignificant.

Stage (S) R×TIndicators Tillage (T) R×S T×S R×T×S
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Figure 2. Soil microbial properties and enzyme activities in rotation and tillage treatments at four sampling stages in a 
long-term crop rotation experiment.

Error bars indicate coefficient of variation. Different letters mean significant difference according to Duncan’s multiple range test (P < 0.05).
BA: Banana-pineapple rotation; BP: banana-cowpea rotation; BR: banana-rice rotation; CK: banana monoculture; NT: no-tillage; 
CT: conventional tillage; TPF: triphenylformazan.



10CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 81(1) JANUARY-MARCH 2021

Error bars indicate coefficient of variation. Different letters mean significant difference according to Duncan’s multiple range test (P < 0.05).
BA: Banana-pineapple rotation; BP: banana-cowpea rotation; BR: banana-rice rotation; CK: banana monoculture; NT: no-tillage; 
CT: conventional tillage.

Figure 3. Greenhouse gas emissions in rotation and tillage treatments at eight sampling stages in a long-term crop 
rotation experiment.
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SM 0.307 0.047 0.614** -0.277 0.209 0.362 -0.323 0.156 -0.462* 0.142 -0.293
BD -0.726** -0.495* 0.223 0.059 0.120 0.178 0.446 0.197 0.334 0.301 0.395
PO 0.174 0.566* 0.682** 0.155 0.367 0.547* 0.434 0.228 0.057 0.076 0.099
WSA1 0.420 0.349 0.039 0.671** 0.008 -0.106 0.710** 0.045 -0.580* 0.180 0.633**
WSA2 0.538* 0.136 0.388 -0.395 0.505* -0.475 0.179 0.553* -0.528* 0.453 0.065
pH 0.370 0.143 -0.568* 0.007 0.072 -0.606** 0.133 0.653** 0.231 0.036 0.250
SOC 0.588* 0.367 0.249 0.040 0.029 0.168 0.061 -0.196 0.504* 0.143 0.470*
TN 0.137 0.416 0.507* 0.152 0.125 0.511* 0.575* 0.069 0.385 0.439 0.198
NH4-N 0.030 0.670** 0.319 -0.049 -0.178 0.596* 0.304 0.210 0.108 0.528* 0.467*
NO3-N 0.296 0.479* 0.532* 0.285 0.303 0.424 0.407 -0.273 0.263 0.602** 0.274
AP 0.544* 0.262 0.480* 0.134 0.311 0.463* 0.329 0.138 -0.165 0.094 0.163
AK 0.508* 0.519* 0.415 0.183 0.355 0.259 0.111 0.085 0.066 0.187 0.052
ECa 0.403 0.488* 0.336 0.354 0.566* 0.284 0.153 0.742** 0.193 0.208 -0.030
EMg 0.364 0.201 0.400 0.416 0.449* 0.376 -0.427 0.328 0.124 -0.146 0.681**

Table 5. Pearson correlation coefficients between physicochemical-microbiological parameters and greenhouse gas across 
rotation and tillage treatments

*, **Significant at the 0.05 and 0.01 probability levels, respectively.
MBC: Microbial biomass C; MBN: microbial biomass N; UA: urease activity; IA: invertase activity; DHA: dehydrogenase activity; APA: acid 
phosphatase activity; GA: β-glucosidase activity; CA: catalase activity; NE: N2O emission; CE: CO2 emission; ME: CH4 emission; SM: soil 
moisture; BD: bulk density; PO: porosity; WSA1: water-stable macroaggregate; WSA2: water-stable microaggregate; SOC: soil organic C; TN: 
total N; AP: available P; AK: available K; ECa: exchangeable Ca; EMg: exchangeable Mg.

MBCIndicators APA DAMBN UA IA GA CA CE NE ME

Effects of tillage on soil quality 
Soil moisture and water-stable aggregates increased on average 32.5% in NT compared with CT, which were because 
crop residues returning on soil surface reduced evaporation and less soil disturbance improved soil structure. The results 
were in agreement with other studies (Zhang et al., 2017). In NT plots, soil consolidation will continue augment until 
an equilibrium bulk density is reached, range of 1.2-1.5 g·cm-3 for our soil type (Sayed et al., 2019). Our results were 
consistent with those of Sauvadet et al. (2018), who found that reduced tillage doubled soil organic C (SOC) compared 
with CT. They suggested that residues covering on soil surface decreased soil temperature and prevented C mineralization. 
The content of exchangeable Ca (ECa) in NT was 35.7% higher than that in conventional tillage. Similar results were 
reported in same soil types (He et al., 2020b). The process was explained as crop residues in NT released large amount of 
soluble Ca2+ to replace H+ (Moghimian et al., 2019). 
 Average MBC and MBN increased 40.3% and 32.5% in NT compared with CT. The positive responses of microbial 
biomass to NT were attributed to the large amount of C and N substrates provided by cowpea and pineapple residues 
addition (Saikia et al., 2019). N2O and CO2 emissions were 32.5% and 22.9% lower in NT than in CT. The results were 
consistent with the studies of Behnke et al. (2018). Unlike CT, which distributes organic matter in 0-40 cm plow layer, 
NT leaves organic matter close to soil surface, thus, it prevents the release of greenhouse gases into the atmosphere. 

Effects of stage on soil quality 
Microbial biomass C, acid phosphatase and dehydrogenase gradually increased and reached peak at booting then 
decreased afterwards. The fluctuation was consistent with banana growth. Notaro et al. (2018) also observed an increase 
of rhizosphere products, such as root exudates, mucilage and sloughed cells at booting, which increase the abundance of 
rhizospheric microbes. 
 N2O and CO2 emissions increased dramatically from March to May, which were the warmest season of 2019-2020. 
Similar results were reported by Piotrowska-Dlugosz et al. (2019). They attributed the reasons to the continuous increase 
of soil moisture, temperature and C input from jointing to booting.

CONCLUSIONS

The increased soil microbial biomass and enzyme activities in rotation soils are accompanied by an increase in microbial 
activity. The decreased greenhouse gas emissions and increased soil organic C and total N could explain the higher C and 
N sequestration in no-tillage than in conventional tillage. Therefore, rotation and no-tillage practices effectively improved 
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soil quality and increased banana yield in tropical environments. In conclusion, integration of no-tillage into rotation 
systems provides a sustainable management in banana production.
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