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ABSTRACT

Nitrogen overfertilization is a common horticultural practice in central Chile, leading to the risk of nitrate leaching and 
contamination of aquifers and groundwater. The aim of the present study was to evaluate the effect of organic amendments 
on NO3- leaching. Three sites with different management systems were selected: Agroecological (AE, 3-yr agroecological 
management), Transition (TR, starting agroecological management), and Conventional (CN, traditional conventional 
management). Two lettuce (Lactuca sativa L.) growing cycles (autumn-winter and spring-summer) were implemented at 
each site. Nutrition at AE and TR was based on organic fertilizers and microorganisms, and inorganic N fertilizers were 
used at CN. The pore water was sampled at the beginning and at the end of each cycle at the 70 cm depth. Lettuce yields 
and unit weight were measured. There was a significant effect of the site and time of sampling (both p = 0.000) on the NO3- 
concentration in leached water. At the beginning of the first cycle, nitrate leaching was 2.2 times higher at TR and CN 
(370 ± 81 mg L-1) compared with AE (163 ± 54 mg L-1), reflecting the loss of previously accumulated soil N. Afterward, 
leaching at CN remained higher than at AE and CN, significantly varying between sampling times; however, it decreased 
by 37% to 80% compared with the initial measurement. Leaching at both AE and TR remained stable within a low range 
of 38 to 96 mg L-1. Results showed that organic soil management is able to maintain a low rate of nitrate leaching in the 
soil compared with conventional management. 
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INTRODUCTION

The contamination of groundwater and aquifers due to nitrate leaching (NO3-) is a common phenomenon in many 
agricultural areas of Chile (Uribe et al., 2005). The nitrate levels in drinking water in central Chile exceed the Chilean and 
European Union regulations of 50 mg L-1; the Valparaíso Region and the Libertador General Bernardo O’Higgins Region 
are 4% and 10% over the limit, respectively (DCPRH, 2016a; 2016b).
 An excess of NO3- in drinking water can be converted into nitrites in the gastrointestinal tract, causing methemoglobinemia 
in infants. There is also emerging evidence of a link to rectal, colon, and thyroid cancer in certain vulnerable human 
groups (Dellavalle et al., 2014).
 One of the main activities that cause nitrate leaching in the soil is the excessive use of inorganic N fertilizers in 
conventional agriculture (Ahmed et al., 2019). After fertilizer application, the predominant N form in the soil is nitrate, 
which is difficult to assimilate and easily leaches unlike ammonium that is retained in soil clays (Latifah et al., 2017). In 
an overfertilization scenario, a residual effect is generated in the soil where excess N remains until it is leached out by 
irrigation or rainfall (Quemada et al., 2013).
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 In Chile, between 75% and 90% of vegetable producers (depending on the region) use mineral sources of fertilization, 
mainly nitric and ammonia combinations. Due to common practices, most of these farmers apply between 20% to 47% 
more than the crop requirement to ensure high yields (Rojas-Walker et al., 2007). 
 Lettuce (Lactuca sativa L.) is one of the most overfertilized crops in Chile and the third most cultivated vegetable in 
the country (Rojas-Walker et al., 2007). This is likely due to the great ability of this crop to accumulate N in its edible 
tissues, and its yield and greenness have a high response to increases in N (Sylvestre et al., 2019). However, the crop has 
a low N uptake efficiency from the soil, 5% to 60% depending on the environmental conditions and its concentration 
due to its usually shallow root system. The crop also requires high irrigation because of its low resistance to water stress, 
which promotes leaching over uptake. In addition, farmers are unaware of the  N demand curve of the crop and apply high 
fertilizer concentrations at the beginning of the cycle when crop demand is low (Sosa et al., 2017); this results in that some 
of the applied N remains as a residual in the soil until leaching is caused by irrigation water. 
 Several authors have indicated that soil nutrition through organic sources in agroecological/organic systems promotes 
gradual nutrient mineralization and N retention in the soil-plant system, thus reducing leaching. This, in addition to other 
advantages, such as moisture retention, increased organic matter and beneficial microorganisms. A study by Benoit et al. 
(2014) on 37 industrial crop farms found that the leaching rate on conventional farms was significantly higher than on 
organically managed farms. Jia et al. (2014) conducted controlled assays with two corn varieties by applying the 100 and 
200 kg N ha-1 rates using bovine manure and urea. At the same N application rate, leaching on urea-fertilized soils was 
always higher than on manure-fertilized soils, although the yields on manure treatments were 0.5% to 5.0% lower. Daza 
et al. (2015) carried out a study with lysimeters in stevia crops using ammonium sulfate vs. manure and vermicompost. 
The organic fertilizers reduced nitrate leaching by 75% to 99% at the 30 cm depth compared with ammonium sulfate. 
 Although there is research on the topic, the evidence is not entirely consistent. Internationally, most studies on nitrate 
leaching have been conducted on industrial crops (Jia et al., 2014; Tosti et al., 2016), and there is limited information 
for vegetables. Furthermore, some authors have observed that it is not possible to ensure that organic nutrition generates 
less N leaching than inorganic nutrition for the same yield. This is due to the slow release of N that sometimes does not 
coincide with the stages of higher N uptake by the crops, increasing leaching (Kirchmann and Bergström, 2001). Research 
on fertilization management to reduce leaching is very limited in Chile, and it is also focused on industrial crops (Claret et 
al., 2011; Salazar et al., 2019). This suggests the need for further research by extending studies to the important vegetables 
consumed in the country. 
 The objective of the present study was to compare nitrate leaching under similar N inputs  adjusted to crop and soil 
requirements in a production system under conventional management with inorganic fertilizers compared with a system 
with traditional agroecological management and another with agroecological transition; these last two sites used only 
organic fertilizers. The crop chosen for this study was lettuce because of its importance in Chilean horticulture and the 
common practice of overfertilization leading to health problems. The study was conducted in two growing seasons, 
autumn-winter and spring-summer. This work is part of a broader research study that aims to study the environmental and 
productive benefits of horticultural systems under agroecological management. 

MATERIALS AND METHODS

The research was carried out in Quillota (32°53’ S, 71°12’ W), Valparaiso Region, Chile. The area has a warm summer 
Mediterranean climate (Csb) according to the Köppen classification, and the 236 mm annual rainfall (10-yr mean) is 
concentrated in the winter months. 
 Three sites of 250 m2 each were selected under three different management systems. First, the Agroecological (AE) site 
was under agroecological management for 3 yr; it was previously cultivated with the rotation and association of vegetables, 
organic fertilizers added to the soil, and an environment with diverse cultivated and wild species. The Transition (TR) site 
was previously used for vegetables under a conventional management system, but organic soil management was initiated 
for the purposes of this study and agrochemicals were eliminated.  Finally, the Conventional (CN) site was previously 
under conventional management, and we continued applying a conventional fertilization package adjusted to the crop.
 The CN and TR sites are neighboring farms that were traditionally used for horticulture under intensive conventional 
management practices with high pesticide and chemical fertilizer use, although these were in disuse for 6 mo prior to the 



212CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 81(2) APRIL-JUNE 2021

experiments. Large amounts of manure were usually applied at these sites at the beginning of each crop. Both sites are 
surrounded by a monoculture of brassicas and 50 ha of avocado and lemon trees, which are under intensive conventional 
management. The AE site is located 400 m north of the other two sites.   The soil is similar at the three sites: Hijuelas series, 
fine loamy, mixed, thermic family, which is of alluvial sedimentary origin, Mollisols, loam to sandy loam, with a depth 
greater than 2 m, and 1% to 2% slope. The soil use capacity is Class II for soils with slight limitations (CIREN, 2009). 
 Five soil samples of 0.5 kg at the 0 to 30 cm depth were randomly taken at each site at the beginning and end of the 
assays. Organic matter, pH, conductivity, N, P, and K were determined in the laboratory based on methods described by 
Sadzawka et al. (2006).
 A quasi-experimental design was defined in which each site with different soil management corresponded to one 
treatment. Nine experimental units (seedbeds) were established at each site. The design was defined in this way because the 
treatments considered traditional soil management that could not be spatially randomized and existed prior to beginning 
the assay. 

Lettuce cultivation and soil management
Two growth cycles of lettuce cultivation were implemented over an 8-mo period at the three study sites. The first cycle, 
autumn-winter, was established from June to October 2018 (105 d from transplant to harvest) with Iceberg type lettuce 
(Lactuca sativa L. var. capitata L., ‘Desert Storm’). The second cycle, spring-summer, was established from November 
to December 2018 (42 d from transplant to harvest) with Milanese type lettuce (L. sativa L., ‘Victoriosa’). Both varieties 
are widely used in central Chile during these cycles. The crops were established on 15 × 1 m2 seedbeds in a 30 × 30 cm2 
planting frame for Iceberg lettuce and 25 × 25 cm2 for Milanese lettuce using a drip irrigation system. A total of 1500 
lettuce plantlets were transplanted in the first cycle and 2160 in the second cycle. 
 Fertilization was adjusted at all three sites to the soil nutrient content (Table 1) and the nutritional absorption curve 
of the crop (based on Sosa et al., 2017) with the aim of obtaining equivalent yields. The estimate for organic fertilizers 
was based on the available N contained in the products before application and a standard rate of 35% mineralization 
per year obtained from the literature (Antoniadis, 2013). In the first cycle, 200 t ha-1 composted goat and sheep manure 
(3 t N ha-1) was applied at the AE site and incorporated in the first 20 cm of soil. Given the high initial N levels at TR, 
only 1 t ha-1 of guano was applied aimed at providing approximately 15 kg N ha-1 organic matter. Initial N was also 
high at CN and only 80 kg ha-1 of 15-30-15 NPK fertilizer (Initial Ultrasol, Soquimich, Santiago, Chile) was applied 
by fertigation (12 kg N ha-1) at the beginning of the crop.

Beginning autumn-winter cycle 

AE 7.9 ± 0.16aA 2.9 ± 0.54aA 3.1 ± 0.37bA 30.4 ± 12.7cA 89.8 ± 6.4bA 355.2 ± 97cB
TR 8.3 ± 0.07bA 3.7 ± 1.02aA 5.4 ± 1.27aA 142.8 ± 51.8aA 186.2 ± 42.2aA 957.8 ± 257aA
CN 8.3 ± 0.07bA 3.0 ± 0.64aA 4.1 ± 0.66abA 105.9 ± 34.4bA 101.7 ± 13.7bB 632.2 ± 202bA

End of autumn-winter cycle, beginning of spring-summer cycle

AE 8.3 ± 0.21aA 2.0 ± 0.53aB 3.6 ± 0.81bA 29.9 ± 8.1abA 113.8 ± 60.8bA 487.9 ± 175aAB
TR 8.2 ± 0.16aA 1.9 ± 0.36aB 5.3 ± 1.57aA 42.5 ± 12.4aB 164.6 ± 61.3aA 331.7 ± 84bB
CN 7.9 ± 1.88aA 1.4 ± 0.28bB 4.3 ± 0.81bA 21.6 ± 12.0bC 137.7 ± 55.0aAB 327.0 ± 70bB

End of spring-summer cycle

AE 8.1 ± 0.11aA 3.2 ± 0.75aA 4.4 ± 0.39aA 33.0 ± 13.0aA 143.7± 15.6aA 623.0 ± 135aA
TR 8.2 ± 0.05aA 2.6 ± 0.47aB 5.2 ± 0.74aA 25.3 ± 2.6aB 205.6 ± 75.0aA 244.3 ± 36bAB
CN 8.2 ± 0.12aA 2.6 ± 0.73aA 4.4 ± 0.73aA 43.1 ± 18.9aB 180.6 ± 49.6aA 613.5 ± 155aA

Table 1. Chemical characteristics of soils under three different site management (SM) practices at three sampling times 
(n = 5). 

Available K

mg kg-1 

Different lowercase letters in the same column for the same sampling time indicate differences between sites for the variable. Different uppercase 
letters in the columns for the same site indicate differences between sampling times for the variable. The soil samples were taken at a 0-30 cm 
depth.
CE: Electrical conductivity; OM: organic matter; AE: agroecological management; TR: transition management; CN: conventional management.

Available PAvailable N

%dS m-1SM pH

OMCE
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 In the second cycle, 350 t ha-1 of commercial base compost (Vuelta Verde, Santiago, Chile; ratio C/N 15.4; 2.6 t N ha-1) 
was applied at the AE and TR sites and a decomposition and mineralization accelerator (800 L ha-1; Biolux, Helénica, 
Quillota, Chile) composed of various microorganisms (Bacillus sp., filamentous fungi, and yeasts) was applied 4 and 6 
wk later, respectively. This application considers a short growth cycle crop with high nutritional requirements, which 
coincided with the summer season when the species has the maximum nutritional requirements (Bugarín-Montoya et 
al., 2011). At the CN site, 764 kg ha-1 of Initial Ultrasol (15-30-15 NPK) was applied and subsequently 440 kg ha-1 of 
Growth Ultrasol (25-10-10 NPK) by fertigation, which was divided in the recommended weekly applications, to make 
crop nutrition more efficient.
 Irrigation was the same at all three sites. In the first cycle, 407 mm irrigation was applied and there was 53 mm rainfall. 
In the second cycle, 224 mm irrigation was applied and there was no rainfall. System precipitation was 16.6 mm h-1.
 No phytosanitary control products were applied at any of the three sites because the macro research study in which the 
assays were conducted was aimed at determining the natural incidence of pests and diseases.
 Temperature was measured by sensors (Pro v2, HOBO, Onset, Cape Cod, Massachusetts, USA) at each site, which was 
6 to 28 °C with a mean of 11.6 °C and 86% mean relative humidity for the first cycle. In the second cycle, temperature 
ranged from 7 to 38 °C with a daily mean of 18.5 °C and 71% mean relative humidity.

Nitrate measurement
Nitrate sampling was performed at the beginning (15 d after transplanting) and end (3 to 5 d before harvest) of each lettuce 
growing cycle at each site. For this purpose, nine pore water collection kits or MacroRhizons (Rhizosphere, Wageningen, 
The Netherlands) were installed at each site, one for each seedbed (experimental unit). The equipment was inserted after 
transplanting at a 70 cm depth under the central row of each seedbed by digging a hole diagonally (45° angle) from one 
side of the seedbed (Figure 1), following the manufacturer’s instructions.
 Leachate collection began 4 h after irrigation with 25 mm syringes attached to the MacroRhizons using luer locks. 
The syringes were maintained for 4 to 6 h until filled with pore water (following the methodology described by Kabala 
et al., 2014). Afterward, syringes were decoupled from the MacroRhizons and collected water was transferred to a sealed 
plastic bottle and immediately taken to the laboratory. Nitrate indicator strips (Merckoquant test strips, Merck, Darmstadt, 
Germany) were immersed in the water samples for 1 to 2 s and then inserted in a portable refractometer (Nitracheck 404, 
KPG Products Ltd., Hove, UK) to determine the nitrate concentration by colorimetry. Two subsamples were measured, 
and the measurement was repeated if the difference was greater than 20%.

Total yield and unit weight measurement
Yield per surface area was determined at each site and in each cycle to ensure that fertilization was adequate; therefore, 
nitrate leaching was evaluated on the basis of similar yields for the different sites. All lettuce units at each site were 
harvested, counted, and weighed. Harvested lettuce heads whose unit weight was below the commercial lower limit (based 
on Saavedra et al., 2017) were rejected along with those affected by pests and diseases to the extent of not being marketable. 

Figure 1. Diagram of the insertion of the MacroRhizons in the leaching zone under the seedbed.
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Statistical analysis
To compare the three sites for the initial soil chemical variables (pH, organic matter, conductivity, N, K, and available P), a 
repeated measures ANOVA was performed after checking the normality of the response variable and considering “sampling 
time” as the within-subjects factor and “site” as the between-subjects factor. If differences between sites or sampling times 
were found, Tukey’s test at 0.05 confidence interval was performed to identify the differences between groups.
 The yields of each cycle were analyzed separately because lettuce varieties differed and were grown in different seasons. 
A one-way ANOVA was performed in each cycle to detect differences between the sites with different management as a 
fixed factor and after checking the response variable for normality. If differences were found, Tukey’s post-hoc test at 0.05 
confidence was performed.
 The NO3- leaching data exhibited a log-normal distribution. Data were therefore transformed to achieve normality. 
Data from the three sites and four sampling times were analyzed by a repeated measure ANOVA with specifications 
similar to those for soil analysis. If significant differences were found between sites and/or between sampling times, 
Tukey’s post-hoc test at 0.05 confidence interval was performed. The analyses were performed with SPSS Software (IBM, 
Armonk, New York, USA) version 20.

RESULTS AND DISCUSSION

Physical-chemical characteristics of soils at the beginning of the study
At the beginning of the study, pH was moderately alkaline at all three sites (based on the classification by Flynn, 2015), 
which is consistent with other studies for soils at this location (Fuentes et al., 2015) (Table 1).
 Conductivity values showed that soils were moderately saline at all three sites (Table 1). The organic matter content 
was very high at the three sites, which indicates past applications at the three sites. As for macronutrients, and following 
Flynn’s interpretation table (Flynn, 2015), available N content in AE was sufficient for most crops, while it was significantly 
higher and classified as excessive in TR and CN, which was likely due to residues from intensive fertilization of previous 
crops grown during the last summer season, a period with no rainfall that could mobilize these compounds in the soil 
profile. The concentration of available P was excessive at all three sites, although it was significantly higher in TR than at 
the other two sites. The K concentration in AE and CN was sufficient, while it was significantly higher and classified as 
excessive in TR. These high K concentrations were expected because it is a characteristic of soils from alluvial sediments 
(Ruiz and Araos, 1978). At the end of the assays, most of the soil physical-chemical characteristics were maintained, 
except for the N concentration, which decreased significantly to suitable values in CN and TR.

Yields
In the first cycle of 115 d, the yield per surface at the TR and CN sites was similar (p = 0.116). However, it was significantly 
lower at AE (p = 0.000), which was 37% less than the mean yield at the other two sites (Figure 2A). This low yield per 
unit area is mainly explained by a 68% rejection of lettuce units at AE vs. 30% on average at TR and CN (data not shown). 
This rejection was due to a fungal disease outbreak (Botrytis cinerea) that caused leaf necrosis, thus preventing their 
commercialization or causing the early death of some individuals. Given that disease control products were not applied 
at any of the three sites and that the first cycle took place in an environment with high humidity and weak to moderate 
rainfall cycles, conditions were susceptible to the appearance of fungal disease (Saavedra et al., 2017). The difference 
between sites can be because AE was cultivated before this study and the preceding crops could have left the inoculum, 
unlike the other two sites that were no used for 6 mo prior to the beginning of the assays. In addition, the AE seedbeds 
were surrounded by flower beds containing Brassicaceae family species, which can harbor disease inoculum that affect 
lettuce leaves (Byron et al., 2019). The CN and TR sites had no wild vegetation around the crop and were surrounded by 
fruit trees and brassica crops with high agrochemical loads (fertilizers, fungicides, and pesticides), which could inhibit 
inoculum spread or even reach the crop by drift (Fishel and Ferrell, 2010), thus exerting a direct control effect. 
 A nutritional deficiency of P, K, and micronutrients such as Cl and Si could make crops more susceptible to a severe 
attack of certain fungal diseases, thus promoting their establishment in the plant and their propagation (Walters and 
Bingham, 2007). A low mineralization rate of the soil organic matter at AE this could have caused a deficit of nutrients 
for the crop. However, based on the reported data, this possibility can neither be confirmed nor ruled out. It is therefore 
necessary to analyze the results obtained for lettuce unit weight. If the scenario of nutritional deficit were real, it would be 
expected that mean lettuce weight at AE would be lower than at the other two sites.
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 The second cycle was much shorter than the first, but yields were similar between the three sites (p = 0.761, Figure 
2B) with an 11% general rejection rate associated with common production problems, such as irrigation problems that 
affected the unit weight of some units, damage by predators (birds, rodents, rabbits), and premature flowering due to high 
temperatures. No diseases were detected, which was probably due to the period being characterized by low humidity and 
high temperatures. The results for the second cycle allow us to infer that the contribution of nutrients in this cycle was 
similar at the three sites.

Lettuce unit weight 
Regarding the weight of the harvested commercial lettuce units, these were similar between the three study sites for both 
cycles (p = 0.234 for cycle 1; p = 0.916 for cycle 2, Figure 3). In the first cycle, unit weight was within the expected range 
for ‘Desert Storm’ (0.9 to 1.1 kg according to Contreras et al., 2017). The adequate unit weight of the harvested units 
allows us to infer that the highest incidence of diseases at AE in the first cycle was not due to a nutritional deficit. In the 
second cycle, the lettuce unit weight at AE and TR was slightly lower (6% to 9%) than the 0.45 to 0.55 kg expected for 
‘Victorious’ according to Anasac (2016). The cause could be only a problem with the irrigation system, which occurred 2 
wk before harvest and reduced optimal irrigation in one seedbed for 2 d. 
 Notwithstanding the specific problems that reduced yield and lettuce unit weight, the overall results indicated that 
nutrition at all three sites was according to crop requirements, which allows comparing nitrate leaching.

Figure 2. Lettuce crop yield for three different site management practices in the autumn-winter cycle (A) and spring-
summer cycle (B). 

Means (n = 9) and standard deviation (error bars) are shown. Different letters indicate differences between sites according to 
Tukey’s test (p < 0.05).

Figure 3. Unit fresh weight of Milanese lettuce for three different site management practices in the autumn-winter (A) 
and spring-summer (B) cycles.

Means (n = 9) and standard deviation (error bars) are shown. 
Expected unit weight range for the studied varieties based on previous technical reports or commercial records is shown between 
horizontal lines; Contreras et al. (2017) for A and Anasac (2016) for B. 
Same letters indicate nonsignificant differences between sites according to Tukey’s test (p < 0.05).
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Nitrate leaching
There were significant differences in nitrate leaching between the three study sites and four sampling times (both with 
p = 0.000).
 At the beginning of the first cycle (autumn-winter), the concentration of NO3- in the leached water was significantly 
higher at CN and TR (mean 370 ± 81 mg L-1) compared with AE (164 ± 54 mg L-1) (Figure 4). This is explained by the 
excessive concentration of soil residual N at CN and TR at the beginning of the assays (Table 1). It was rapidly leached 
by irrigation and rain (4 mm rainfall in sampling week) because it corresponds to soluble forms. This coincides with 
other studies; for example, Beckwith et al. (1998) demonstrated that at a site under organic nutrition, residual soil N from 
previous intensive cultivation, generated a high N concentration in the leachate, even after a winter fallow, which exceeded 
the prevailing regulations in the country under study. This fact is of environmental concern because it shows that the high 
concentrations of residual soil nitrates under traditional conventional management could contaminate groundwater during 
rain events. 
 Therefore, the NO3- concentrations in the leachate at the three sites at the end of the first cycle were significantly lower 
than their initial concentrations and were similar (mean 44.6 ± 7.5 mg L-1); these values are within the limits of nitrate 
concentration in drinking water established by the European Union (50 mg L-1). This decrease reflects the loss of soil 
N during the cycle through crop uptake and leaching of residual N. At the CN and TR sites, this decrease was 87% on 
average, which shows that the excess soil residual N was “cleaned” from the soil during the cycle. This “cleaning” process 
is reflected in the significant decrease in soil N, ranging from excessive values to values considered sufficient (Table 1) 
toward the end of this cycle. 
 At the beginning of the second cycle, the concentration of NO3- in the leachate increased at all three sites compared with 
the end of the first cycle (0.8 to 3.6 times, Figure 2). This was expected given the new application of N sources for crop 
nutrition carried out at all three sites. At that time, leachate NO3- concentration (202 ± 70 mg L-1) at CN was significantly 
higher than at the other two sites (mean 92 ± 45 mg L-1), and was similar to the initial concentration for the first cycle at this 
site; values were higher than those recommended by international standards (European Union, 50 mg L-1). This is probably 
associated with the soluble nature of the fertilizers applied at this site (2 d prior to sampling), which leach rapidly, unlike 
N supplied through compost at AE and TR, which is gradually mineralized. These differences in leaching in soil with 
organic vs. inorganic nutrition are similar to the results of other studies such as Daza et al. (2015). The concentration of 
NO3- at the beginning of the second cycle at TR was 79% lower than the concentration at the beginning of the first cycle 
due to the “cleaning” process of the site.

Figure 4. Nitrate leaching for three different site management practices and time of sampling in each cycle. 

Means (n = 9) and standard deviation (error bars) are shown. Different lowercase letters at the same site 
indicate differences between sampling times according to Tukey’s test (p < 0.05). Different uppercase letters 
for the same sampling time indicate differences between sites according to Tukey’s test (p < 0.05).
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 At the end of the second cycle, the NO3- concentration in the leachate was significantly higher at CN (154 ± 70 mg L-1) 
compared with TR and AE (mean 53 ± 31 mg L-1). The value was also similar to the initial value in the same cycle at CN. 
This could be due to gradual fertilizer application according to the established program, which kept the concentration of 
soil soluble N constant. In conventional fertilization programs, the common practice is to not apply fertilizers in the last 
week because the crop absorption curve is stabilized. However, harvest in this cycle occurred 1 wk ahead of the planned 
date (at the three sites) due to high temperatures in December (mean 18 °C, maximum 33 °C), which accelerated plant 
development. Consequently, the last planned fertilization was applied only 4 d before harvest. This could generate high 
residual soil N when nitrate was measured. Several authors recognize that, although the first factor affecting nitrate 
leaching is the applied fertilizer rate, timing of the application of such fertilizers also affects it significantly in different 
crops (Delin and Stenberg, 2014). 
 In addition, at the end of the second cycle, the NO3- concentration in the leachate at AE and TR were similar. The 
concentration at AE did not significantly decrease compared with the beginning of the same cycle. This could be due to 
gradual N mineralization from compost at a rate equivalent to crop absorption, which allowed the crop to be efficiently 
nourished and maintain low N mobility in the profile. In contrast, the reduction in NO3- concentration at TR between 
the beginning and end of the second cycle was significant (64% less). The cause is difficult to establish, but it could be 
attributed to a lower rate of mineralization at this site compared with AE, which resulted in the crop consuming a higher 
proportion of solubilized N. Although the same amendment and product based on microorganisms were applied at TR 
and AE, the diversity and amount of microorganisms initially present in the soil were probably less at TR because of the 
previous intensive conventional management. This belief has been reported by several authors (e.g., Paolini Gómez, 2018).
 Analyzing the evolution of the data at each site, the values at CN were generally higher than at TR and AE, and values 
exceeded those recommended by the prevailing regulations. Although there were variations between sampling times, the 
NO3- concentration in the leachate remained between 37% and 80% below the initial value after the first measurement at 
the beginning of the first cycle.
 Likewise, at both the TR and AE sites, nitrate concentration values remained stable and similar at both sites after the 
first measurement with mean values ranging from 38 to 96 mg L-1. Although these values were to some extent higher than 
the European standard, they should be interpreted as subsurface values that decrease further down in the soil profile. 
 This result shows the comparative benefits of organic soil nutrition because it was possible to obtain commercial yields 
and unit weights similar to those at the CN site and with no risk of groundwater contamination at the beginning or end of 
the cultivation cycle. 
 It is generally recommended to conduct longer assays (e.g., more than one winter) and with intermediate sampling 
periods to evaluate and compare the leaching rate associated with each fertilizer application time and rainfall scenarios. 
This can also be associated with the existing microbial biomass or with soil respiration, which allows to accurately 
compare nutrient availability with the mineralization rates in sites with organic amendments. 

CONCLUSIONS

The present study showed that, at equivalent N rates applied to the crops, organic soil nutrition is able to maintain 
comparatively low levels of nitrate leaching in the soil during cultivation, which is probably due to gradual nutrient 
mineralization by microorganisms. 
 It also shows that in soils with a high residual N due to the traditional application of inorganic fertilizers, it is quickly 
leached with the entry of water into the soil profile. This is an issue of environmental concern because N can contaminate 
groundwater. Finally, it was also observed that an inorganic fertilization program adjusted to the soil and needs of the 
crop, with gradual fertilizer applications, generated variable nitrate leaching, generally higher than nitrate leaching at the 
sites with agroecological management. However, this adjusted fertilization program allowed the decrease of residual N 
that was initially in the soil due to traditional conventional fertilization. 
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