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ABSTRACT

Soil compaction causes negative effects on crop yield and its mechanical response analysis has recently gained relevance 
for research through numerical methods. In this work, Finite Element Method (FEM) using the Mohr-Coulomb (MC) and 
Hardening Soil (HS) constitutive models were employed to simulate the mechanical response of a Vertisol agricultural 
soil. First, an experimental study of the unconsolidated-undrained (UU) triaxial compression test with different moisture 
contents (w = 10%, 20% and 34%) and confining pressures (σ3 = σc = 0.05 MPa, 0.10 MPa and 0.15 MPa) was carried 
out, to obtain the shear strength parameters cohesion (c) and friction angle (φ), as well as the Young’s modulus (E) of the 
soil. The experimental study was conducted through a 32 factorial design with three replicates that it was used to evaluate 
the influence of the w and σc on E of the studied soil. Also, an analysis of the behavior of the φ and c parameters at each w 
was performed. Numerical simulations were done with similar conditions as the experimental tests with respect to loading 
and boundary conditions. A comparison of the mechanical response between numerical results and physical experiments 
was carried out. As a result, the MC model allowed to estimate satisfactorily the stress-strain relationship of the soil for 
w of 10% and 20%, while HS model exhibited a better approximation for w of 34% in comparison with the MC model. 
Finally, the methodology and the adjusted parameters of the agricultural soil obtained in this work, can be used in the 
study of soil compaction produced by the agricultural machinery.

Key words: Finite element method, Hardening soil model, Mohr-Coulomb model, triaxial compression test, Vertisol soil.

INTRODUCTION

Nowadays, soil compaction is a worldwide problem in modern agriculture, it is responsible for soil degradation of 
millions of hectares, and it is one of the main reasons that affect plant growth, reducing soil productivity and therefore 
crop yields (Tracy et al., 2011). The study, prediction and improvement on the understanding of soil compaction through 
numerical simulation is an alternative to traditional methods. Numerical simulations are acquiring relevance for modeling 
agricultural soil behavior and its interaction with tillage tools (Ucgul et al., 2018), plants (Dunbabin et al., 2013) and 
agricultural tires (Zhao and Zang, 2017). Nowadays, numerical tools are an alternative to study soil compaction, root 
growth and to improve the design of tillage tools and agricultural tires. Finite Element Method (FEM) and Discrete 
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Element Method (DEM) are numerical techniques commonly used for modeling soil behavior. According to Ungureanu 
et al. (2017), FEM is extremely useful to interpret the stress-strain behavior of agricultural soils, and the constitutive soil 
models most commonly used are the Mohr-Coulomb, Duncan-Chang Hyperbolic, Drucker-Prager and Modified Cam-
Clay (David et al., 2015). On the other way, the laboratory test used to determine the mechanical properties of soils is 
usually the triaxial compression test (Lee et al., 2012). 
	 In the literature, several researchers have studied the soil mechanical response using the FEM. Herrera et al. (2008a) 
studied the mechanical behavior of an Oxisol by means Mohr-Coulomb and Extended Drucker-Prager models and 
numerical simulations. As a result, the Extended Drucker-Prager model showed more accuracy to simulate the mechanical 
response of the Oxisol in comparison with experimental results obtained using the triaxial compression tests. Herrera 
et al. (2010) simulated the stress-strain relationship of three Cuban clay soils using FEM and studied the accuracy of 
the Duncan-Chan model in comparison with experimental data obtained by the triaxial compression test. The results 
showed that the Duncan-Chan model accurately predicted the soil behavior when a plastic failure is expected. Mendoza 
et al. (2014) studied the mechanical behavior of the Brasilia’s clay by triaxial tests and numerical simulations using 
three material models for the soil. Here, the subloading Cam Clay model presented a less rigid transition of the stress-
strain relationship similar to the experimental results, while the hypoplasticity with structure model better represented the 
cementing effect in the drained triaxial tests. Other authors used DEM to simulate and replicate the triaxial compression 
test and study the behavior of mainly granular materials (Duan et al., 2017; Nguyen et al., 2018). 
	 In this context, the aims of this work were to: (1) realize an experimental study to obtain the shear strength properties 
cohesion (c) and friction angle (φ) and elastic modulus (E) of a soil widely used in agriculture of central Mexico, 
with different moisture contents (w) and confining pressures (σ3 = σc), using unconsolidated-undrained (UU) triaxial 
compression test; (2) study the influence of the moisture content with three different confining pressures on its mechanical 
properties, such as the Young’s modulus (E), c and φ; (3) develop a Finite Element (FE) model of the triaxial compression 
test, using the Mohr-Coulomb and the Hardening soil constitutive models to simulate the soil behavior; and (4) compare 
the stress-strain relationship obtained by simulation and the experimental results. The mechanical properties of the soil 
obtained will be used in future research for the study of the effect of the agricultural soil compaction. 

MATERIALS AND METHODS

Experimental tests to determine mechanical properties of the soil
This research work was carried out using an agricultural soil of the experimental field of the University of Guanajuato 
(20°44’43” N, 101°19’40” W; 1730 m a.s.l.), in the southwestern part of the State of Guanajuato in central Mexico. The 
agricultural soil of the experimental region was classified as a Vertisol (Typic Haplustert) according to the USDA Soil 
Taxonomy (Soil Survey Staff, 2014). This soil is considered as one of the most productive in the country and it is the 
agricultural soil with the highest presence in the State of Guanajuato (Torres Guerrero et al., 2016). 
	 A soil sample was collected to determine the mechanical properties in a soil layer ranging from 0 to 30 cm depth. 
Farming operations are commonly carried out at this soil depth. Besides, the classification of soil layer (USDA Taxonomy) 
was carried out using the Unified Soil Classification System (USCS) by the ASTM D2487 standard (ASTM, 2017). 
For this, a combined granulometric test was performed according to the ASTM D422-63 standard and Atterberg limits 
established the ASTM D4318 standard. Also, a linear shrinkage analysis in accordance with the Proctor Standard-ASTM 
D698 and organic matter content under the NMX-AA-21 Standard (SEMARNAT, 2000) was carried out. Table 1 shows 
the basic properties of the collected soil layer. 
	 In a first step, a Proctor Compaction Test according to Proctor Standard-ASTM D698 was performed to obtain moisture 
contents (w) that can affect dry volumetric weight (γd) of the agricultural soil studied (Figure 1). Three w values of 
10%, 20% and 34% were taking from the dry side of the compaction curve, because these are values that can cause an 
unfavorable effect in the soil by the tires of the agricultural machinery. The last value is the most unsuitable w because 
according to the compaction theory, this water content develops the minimal void relationship (e) in the soil and therefore 
the maximum compaction. For the case of agricultural soils, this value affects the growth of the plants.
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	 Then, an experimental study of the unconsolidated-undrained (UU) triaxial compression test was carried out, using 
reconstituted triaxial samples, to obtain the stress-strain behavior of the soil. This study was performed in the Soil 
Mechanics Laboratory of the University of Guanajuato. The experiment was conducted using three soil moisture contents: 
low (10%), medium (20%) and high (34%); for each moisture level considered, three confining pressures (0.05, 0.10 and 
0.15 MPa) were tested and three replicates for each combination of w and the confining pressure. For this, an experimental 
study of 27 triaxial compression trials was performed by the ASTM D2850 standard, Standard Test Method for UU 
Triaxial Compression Test on cohesive soils. For the experiments, w was measured using an oven-drying at 110 °C for 24 
h as recommended by ASTM D2216. The unconsolidated-undrained triaxial compression test was carried out using the 
Digital Tritest 50 equipment (ELE International, Bedfordshire, UK; Figure 2A). In each test, a cylindrical soil specimen 
was prepared with a specific w and a relationship height/diameter of 2:1 (76 mm height and 38 mm diameter) (Figure 2B). 
A latex membrane was used to seal the cylindrical soil specimen, which was positioned in the triaxial pressure chamber. 
The soil specimen was subjected to a controlled confining pressure (σ3 = σc) using water in the chamber. Later, an axial 
load (Δσd = σ1 – σ3) is applied up to the point where the sample fails; during the test, no drainage of the sample was allowed 
and the axial load remains at a constant speed of 1.17 mm s-1 (Figure 2C). In a second step, Young’s modulus (E), friction 
angle (φ) and cohesion (c) shear properties of the soil for the three w and their replicates were obtained. Young’s modulus 
was obtained as the initial slope of the stress-strain relationship (secant modulus). The graphic method of the Mohr circles 
was used to obtain φ and c, using three circles corresponding to the confining pressures for each moisture level. Finally, 
a 32 factorial design (FD) was used to investigate the effect of w and the confining pressure on the E parameter (Table 2). 
Likewise, an analysis of the behavior of φ and c shear parameters depending on the w was carried out.

Figure 1. Compaction curve for the studied soil.

Gravel, %	 0.0
Sand, %	 12.2
Silt, %	 25.0
Clay, %	 62.8
Liquid limit, %	 75.6
Liquid plastic, %	 38.6
Plasticity index, %	 37.0
USCS	     MH
Linear shrinkage, %	 11.8
Natural moisture content, %	 6.7
Natural dry density, g cm-3	 1.8
Maximum dry density, g cm-3	 1.3
Optimum moisture content, %	 34.0
Compaction degree, %	 140.0
Organic matter content, %	 5.7

Table 1. Summary of properties of soil sample.

Properties Value

USCS: Unified Soil Classification System; MH: high plasticity silt.
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Finite element model of the unconsolidated-undrained triaxial compression test
A numerical model of the UU triaxial compression test for the Vertisol was developed using FEM. The soil specimen 
was modeled by two soil constitutive models, Mohr-Coulomb (MC) and Hardening Soil (HS) models (Bentley, 2020). 
Experimental parameters in combination with the soil properties obtained from the literature were adjusted and used as 
the input data in the numerical simulations.  
	 The MC model is considered as a perfect elastoplastic model with a first-order approximation to the non-linear behavior 
of the soil and this model can simulate the behavior of fine or granular soils. To approximate the soil behavior by the MC 
Model, five input parameters are required: E, φ, c, Poisson’s ratio (v), and dilatancy angle (ψ). The mechanical properties 
E, φ and c were determined for the three moisture levels in the previous section. The v value for unsaturated clay soil must 
be less than 0.35 according to Nieto Leal et al. (2009). Unconsolidated clays showed a very low dilation, therefore, ψ can 
be considered as zero (Jawad et al., 2020). From these initial values, the parameters were adjusted for the simulations.
	 The HS model is considered an elastoplastic hyperbolic model, based on classical plasticity theory. This is a second-
order model suitable to simulate the behavior of clays, sands, silts and gravel (Teo and Wong, 2012; Bentley, 2020). To 
approximate the soil behavior by the HS model, the following parameters were used: (a) MC failure parameters φ, c and 
ψ; (b) the basic parameters for the soil stiffness, which are the reference secant stiffness (Eref50), reference tangent stiffness 
(Erefoed), reference unloading-reloading stiffness (Erefur) and power exponent of stiffness-stress level correlation (m); and 
(c) the advanced parameters, these are: the unloading-reloading Poisson’s ratio (vur), reference stiffness stress (pref), side 
pressure coefficient (K0) and failure ratio (Rf).
	 Some assumptions for HS model parameters considered in this work are: m = 1.0 for a soft clay (Wu and Tung, 2020), 
vur = 0.2, K0 = 1- sin φ and Rf = 0.9 (default settings suggested by PLAXIS software; Bentley Systems, Exton, Pennsylvania, 
USA). The stiffness modules (Eref50, Erefur and Erefoed) were calibrated, taking as initial values: Eref50 is the secant stiffness 
at 50% of the maximum deviatoric stress, at a pressure equal to the reference stress (default value is pref = 100 kN·m-2), 
Erefoed ≈ Eref50 and Erefur ≈ 3Eref50 according to PLAXIS. The main difference between MC and HS is the stiffness approach, 
the second model is described more accurately by employing three input stiffness (Eref50, Erefur and Erefoed). 

Moisture (w), %	 10.00	 20.00	 34.00
Confining pressure (σc), MPa	 0.05	 0.10	 0.15

Table 2. Factors and levels for 32 factorial design.

Factor -1 0

Level

1

Figure 2. Digital tritest equipment (A), soil specimen (B) and triaxial test in progress (C).
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	 A general procedure of the numerical simulation of the triaxial test is shown in Figure 3 to facilitate the understanding 
of the methodology steps order. 

Figure 3. Flow chart of the numerical simulation of the triaxial test.
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	 First step, the soil specimen geometry was built in the structure module in the Finite Element Software PLAXIS 2D. 
To simplify the triaxial test model, the soil sample was modeled with an axisymmetric geometry of 1.0 m × 1.0 m, which 
represents a quarter of the soil sample (Figure 4). Although the model dimensions are not realistic in comparison to the 
experimental sample, the dimensions of the model do not influence the results because the soil weight was not considered, 
and if the real dimension is considered the model can be unstable or presents numerical mistakes due to the proximities in 
the borders. Second step is the material model (MC or HS) selection and the third step is the initial setup of data according 
to the material model. Fourth step is to generate the mesh. To model the stresses and deformations in the soil, a 15-noded 
triangular element was employed to mesh the soil sample, which involves a fourth-order interpolation for displacements 
and the numerical integration provides 12 stress points. A medium global coarseness was selected, which generated in the 
finite element model 242 elements and 2041 nodes. Fifth step, establishing boundary and load conditions. As boundary 
conditions, the left boundary (line from P1 to P2) and the bottom boundary (line from P2 to P3) of the model are axes of 
symmetry (Figure 4), in these axes of symmetry, the displacements perpendicular to the axes were fixed imposing cero 
displacement (Ux = 0 for line P1P2 and Uy = 0 for the line P2P3). While the displacements along the axes of symmetry 
were maintained free to allow a smooth movement along the boundaries (Uy = free for line P1P2 and Ux = free for line 
P2P3). As load conditions, the soil specimen was subjected to a distributed load, the confining pressure (σ3 = σc), which 
was applied to the top (line P1P4) and the right (line P4P3) boundaries at negative directions of the axes. Thus, a second 
distributed axial load (σ1 - σ3) was applied to the top boundary at the negative direction of the vertical y-axis until failure 
(Figure 4), to simulate the deviator stress increment. These conditions, confining pressure (σc) and deviatoric stress (axial 
load) (Δσd), represent the conditions implemented during the experimental tests. Sixth step is solving the finite element 
model. In seventh step, the numerical stress-strain relationships were compared with the experimental result to verify their 
fit, if the degree of adjustment was not satisfactory, the parameters set are recalibrated through curves fitting. A total of 
three scenarios were evaluated for each soil model (MC and HS), each scenario using different setup parameters to obtain 
a numerical stress-strain curve.

RESULTS AND DISCUSSION

Experimental tests to determine mechanical properties of the soil
Figure 5A shows the stress-strain curves for the three moisture contents (w) at 0.05 MPa confining pressure (σ3 = σc). 
The highest deviatoric stress (Δσd = σ1 – σ3) was obtained for the lowest w (10%), which presents a brittle failure with a 
breakpoint and shear plane well-defined (Figure 5A, black curve), after the maximum deviatoric stress, it decreases rapidly. 
For the medium w (20%), a similar behavior was obtained, however, a decrease in the maximum Δσd is presented (Figure 
5A, red curve). The lowest Δσd was achieved with the highest w (34%). In this case, the soil begins to flow plastically 
without defining a failure point (Figure 4A, blue curve), and does not presented shear failure planes, but barrelling failure 
is observed in the soil test specimen. These kinds of behavior are characteristic of clayey and granular soils in triaxial 
compression test, as reported by Herrera et al. (2008a), Mánica et al. (2018) and Ren et al. (2018). Similar behavior of the 
stress-strain curves for the other confining pressures (σc = σ3 = 0.10 and 0.15 MPa) at each w was obtained, but an increase 
in the maximum Δσd is observed as the confining pressure increases from σc = σ3 = 0.05 to 0.15 MPa (Figure 5B).

Figure 4. Simulation detail, simplified geometry of the finite element model of the triaxial test (A) and loading steps 
applied to the model (B).
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	 Table 3 shows E values obtained from the stress-strain relationships of the 27 samples tested in UU conditions using 
the triaxial apparatus. Likewise, it presents the shear strength values φ and c, for each w and the three confining pressures 
(σc = σ3) and according to the graphic method of the Mohr circles.

Figure 5. Stress-strain curves for different moisture contents (w) at 0.05 MPa of confining pressure (σ3 = σc) (A) and 
different confining pressure at w = 10% (B). 

10	 1	 0.05	 24.17	 0.1031	 30.39
		  0.10	 23.61		
		  0.15	 22.09		
	 2	 0.05	 21.82	 0.1009	 29.34
		  0.10	 19.86		
		  0.15	 21.71		
	 3	 0.05	 20.18	 0.1101	 30.17
		  0.10	 23.32		
		  0.15	 19.43		
20	 1	 0.05	 9.27	 0.1201	 15.43
		  0.10	 11.15		
		  0.15	 12.31		
	 2	 0.05	 11.04	 0.0986	 14.38
		  0.10	 12.42		
		  0.15	 11.43		
	 3	 0.05	 10.09	 0.1179	 14.98
		  0.10	 9.15		
		  0.15	 10.09		
34	 1	 0.05	 6.29	 0.0536	 2.44
		  0.10	 7.56		
		  0.15	 7.38		
	 2	 0.05	 6.44	 0.0595	 2.02
		  0.10	 7.10		
		  0.15	 8.78		
	 3	 0.05	 6.62	 0.0600	 2.20
		  0.10	 8.86		
		  0.15	 7.28		

Table 3. Mechanical properties Young’s modulus, friction angle and cohesion obtained from the unconsolidated-undrained 
(UU) triaxial compression tests.

Parameters

Moisture 
    (w)

Replicate 
number

Confining 
pressure (σ3)

Young’s 
modulus (E)

Friction 
angle (φ)

Cohesion 
(c)

MPa MPa %    º
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Figure 6. Behavior of the soil parameters: (A) Young’s modulus under different confining pressure (σc = σ3) and moisture 
contents, (B) friction angle under different moisture contents and (C) cohesion for different moisture contents.

	 The ANOVA for E was conducted and F-values, p-values and the percentage contribution of each source are given in 
Table 4. Results indicated that w factor produces a significant effect on E with a 95.0% confidence level. This factor is 
affecting E with a considerable percentage contribution (P) of 96.1%. On the other hand, the confining pressure factor 
(σc = σ3) and the interaction of both factors are not significantly affecting E with a minimum percentage contribution of 
0.3% and 0.5%, respectively. 
	 Figure 6A presents the values of E for different w and confining pressures (σc = σ3), which shows that E decreases as 
w increases, while the confining pressure values used in this work does not affect E, this corroborates the ANOVA results 
and agrees with the literature (Huang et al., 2020).
	 The behavior of the φ parameter for the three w is shown in Figure 6B. It can be noted that φ decreases when w 
increases, since the latter produces that friction between particles decreases, similar behavior is reported in clay soils by 
Leong et al. (2013).

A-Moisture content (w)	 1024.30	 2	 512.15	 275.01	 < 0.0001	 96.1
B-Confining pressure (σc = σ3)	 2.89	 2	 1.44	 0.7749	 0.4755	 0.3
AB	 5.36	 4	 1.34	 0.7194	 0.5898	 0.5
Error	 33.52	 18	 1.86			   3.1
Total	 1066.07	 26				    100.0

Table 4. ANOVA results for Young’s modulus (E).
p-valueSource Sum of squares df P (%)F-valueMean square
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	 Figure 6C shows the c parameter for the three w, it is observed that this property increases to a maximum value, when 
soil w increases from 10% to 20%, this effect is attributable to the formation of meniscus. Once the soil begins to saturate 
from 20% to 34% w, capillary softening occurs and the c value decreases considerably (Leal et al., 2012). Other authors 
reach similar results, for instance Hossne et al. (2011) stated that the increase in w produces that c tends to be negligible.

Finite element model of the UU triaxial compression test
Tables 5 and 6 show the adjusted parameters obtained from the experimental study and the literature, which were used as 
the input data in the numerical simulations to approximate the stress-strain relationship for both, the Morh-Coulomb (MC) 
and Hardening soil (HS) constitutive models. In the same way, the obtained stress-strain numerical curves were compared 
with those obtained from the laboratory experiments. 
	 The numerical stress-strain curves and those obtained experimentally are shown in Figure 7. These numerical stress-
strain curves were obtained for a confining pressure of σc = σ3 = 0.15 MPa with w = 10%, 20% and 34%. From the 
numerical simulations, the maximum Δσd (σ1 – σ3) was obtained with a maximum absolute percentage error of 6.4% and 
4.8% for the MC and the HS constitutive models, respectively.
	 In Figure 7A, for the low w (10%), the experimental curve presents a hypoplastic behavior, that according to González 
(2011) is typical of fragile soil failure. In this failure, the Δσd increases rapidly at low strains, reaching a maximum 
value from which failure occurs at a well-defined point on the curve. For this w, the MC model shows an elastoplastic 
behavior, which represents satisfactorily the experimental stress-strain relationship except for the reproduction of the 
suction effect or the formation of meniscus in the soil, the maximum Δσd (3.0% of percentage error in comparison with 
the experimental) and the yield point. In contrast, the HS model due to its capability to represent a soft transition between 
the elastic and plastic region of the stress-strain curve, for this low moisture level, this model does not adjust adequately 
the stress-strain relationship of the soil, in comparison with the MC model. For the medium w (20%), similar numerical 
results were found in comparison with 10% (Figure 7B). For the high w (34%) (Figure 7C), the experimental stress-
strain results showed a plastic failure. Therefore, in this w value, the MC model does not adjust to the soil behavior. It is 
important to recall that the model used in the numerical simulations (MC) idealizes the behavior of the soil to be perfectly 
elastoplastic. In contrast, the HS model represented adequately the stress-strain relationship for this w, with a percentage 
error of 4.8% of the maximum Δσd between the experimental and the numerical simulation result.

%	 MPa		  MPa	 °	 °
10	 24.17	 0.33	 0.200	 29.0	 0
20	 11.04	 0.33	 0.150	 14.0	 0
34	 7.38	 0.33	 0.058	 2.8	 0

Table 5. Parameters used as input data in the numerical simulations for Mohr-Coulomb (MC) model for the three 
moisture contents.

Moisture 
content (w) Poisson’s ratio (v)

Dilatancy angle 
(ψ)Cohesion (c) Friction angle (φ)

Young’s 
modulus (E)

10	 29.0	 0.200	 0	 80	 44.950	 160	 1	 0.2	 0.100	 0.51	 0.9
20	 14.0	 0.150	 0	 20	 56.850	 130	 1	 0.2	 0.100	 0.75	 0.9
34	 2.8	 0.058	 0	 24	 45.700	 50	 1	 0.2	 0.100	 0.95	 0.9

Table 6. Parameters utilized as input data in the numerical simulations for Hardening Soil (HS) model for three moisture 
contents (w).
w c

φ: Friction angle, c: cohesion, ψ: dilatancy angle, Eref50: reference secant stiffness, Erefoed: reference tangent stiffness, Erefur: reference unloading-
reloading stiffness, m: power exponent of stiffness-stress level correlation, vur: unloading-reloading Poisson’s ratio, pref: reference stiffness stress, 
K0: side pressure coefficient and Rf: failure ratio.

MPa MPa MPa % ºº

φ Ψ m vur pref K0 RfEref50 Erefoed Erefur
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CONCLUSIONS

The experimental results revealed that an increase of water content (w) from 10% to 34%, decreased significantly Young’s 
modulus (E) and friction angle (φ), while the confining pressure values used in this work did not affect E; also, cohesion 
(c) increased to a maximum when w increased from low to mid-levels, once it began saturation from mid to high w 
levels, capillary softening occurred, and the c decreased considerably. The finite element model allowed to numerically 
reproduce the experimental test results, by using Mohr-Coulomb (MC) and Hardening Soil (HS) material models, where 
MC fitted adequately for w between 10% and 20%, while HS exhibited a better approximation for w = 34%.
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