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ABSTRACT

The excessive use of N in agriculture has created various environmental and economic problems. Remote sensing and 
unmanned aerial vehicles (UAV) are feasible solutions to infer the status of a crop and enable a better management during 
the growing season. The objective of this study was to correlate experimental N content and wheat (Triticum aestivum 
L.) crop aboveground biomass data with vegetation indices estimated using UAV images. In this study, the N nutrition 
index and N dilution curve were used as indicators of the state of plant N; input variables to estimate these indicators 
were the N content and aboveground biomass. Four flight campaigns were conducted at different phenological stages 
of a wheat crop and seven N doses were evaluated. A linear relationship of blue normalized difference vegetation index 
(BNDVI) and green normalized difference vegetation index (GNDVI) with aboveground biomass and N content was 
identified. BNDVI and biomass demonstrated high R2 during boots swollen and end of anthesis growth stages (0.62 and 
0.68, respectively), while GNDVI showed the highest R2 during the ear half emerged and beginning of anthesis growth 
stages (0.84 and 0.79, respectively). For N content estimation, GNDVI showed a higher correlation than BNDVI, and the 
adjustment curve showed an R2 up to 0.81 only for the last flight (end of anthesis), BNDVI showed an R2 of 0.78. Remote 
sensing and vegetation indices estimated from UAV images can be reliably used to estimate N content and wheat biomass, 
contributing to knowing the crop N status.

Key words: Blue normalized difference vegetation index, critical nitrogen dilution curve, green normalized difference 
vegetation index, nitrogen nutrition index, Triticum aestivum.

INTRODUCTION

Intensive agriculture has forced a paradigm shift in the efficient management of fertilization. The dilemma is continually 
producing higher volumes of agricultural products to meet human, livestock, and industrial demands while efficiently 
using natural resources.
 Within context of intensive agricultural production, the irrational and excessive application of chemical fertilizers is 
one of the main causes of pollution of different ecosystems. Specifically, N, one of plants’ required macro elements, is 
often excessively applied, which has created a number of negative human and environmental impacts, like eutrophication, 
acid rain, drinking water pollution, and emissions of nitrous oxides (Spiertz, 2010; Cameron and Moir, 2013).
 Farmers and agricultural managers are interested in measuring and evaluating the nutritional status of crops at specific 
critical times: in early growth stages to provide adequate amounts of fertilizers for normal crop growth, and during the 
advanced development stage for health monitoring and performance prediction.
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 For some years, remote sensing has played an important role in providing information in time and space for precision 
agriculture due to its ability to measure biophysical parameters and detect spatio-temporal variability.
 Vegetation indices (VIs) have been proposed as indirect methods of measuring biophysical variables of vegetation 
based on spectral data obtained by remote sensing. Actually, the miniaturization of multispectral, hyperspectral, and 
thermal sensors; advances in software, hardware, electronics, and mechatronics; and the introduction of positioning 
technologies have allowed these sensors to be mounted on unmanned aerial vehicles (UAVs), making them more popular 
and a viable tool for precision agriculture (PA).
 Wang et al. (2007) analyzed the relationship between the leaf area index (LAI), as a fundamental structural parameter 
in the description of the status of the vegetable cover of rice cultivation, and seven vegetation indices using visible 
spectrum bands measured with a radiometer. They found that LAI and normalized difference vegetation index (NDVI) in 
the different bands in the visible (VNDVI) had coefficient of determination (R2) values higher than 0.85, the blue NDVI 
(BNDVI) and green NDVI (GNDVI) had R2 of 0.981, and BNDVI and NDVI had R2 of 0.987.
 Hunt et al. (2010) employed a digital camera (digital FinePix S3 Pro UVIR camera, Fujifilm, New Jersey, USA) 
mounted on a UAV as a method for measuring LAI of wheat, finding that the GNDVI is strongly correlated with this 
biophysical variable, reporting an R2 of 0.85 for LAI less than 2.7. 
 Geipel et al. (2016) developed a multispectral camera prototype for the estimation of aboveground biomass and N 
content in winter wheat designed for UAVs. The system captures multispectral images with which NDVI and the red-edge 
inflection point (REIP) were estimated, finding that the best results for estimation of aerial biomass were produced with 
the NDVI (R2 = 0.72-0.85), whereas the N content is better estimated using REIP (R2 = 0.59-0.89).
 The objective of this research was to determine if it is possible to diagnose wheat (Triticum aestivum L.) N status through 
the use of UAV images. The approach requires estimation of aboveground biomass and N content, estimated from vegetation 
indices obtained from images of a modified commercial camera mounted on a UAV platform. The study contemplates the 
use of a critical N dilution curve and a N nutrition index to determine if the N content was optimal, in excess or in deficiency 
status. This approach can help to overcome the complications of localize spatially the wheat crop N status.

MATERIALS AND METHODS

The research was conducted at the facilities of the Postgraduate College’s Montecillo Campus, located in Texcoco, 
México. We used a plot with wheat (Triticum aestivum L.) ‘Nana F2007’. It is classified as a variety of early cycle, 85 
to 134 d maturity in rainfed conditions It is classified as a variety of strong, extensible gluten and good bread volume. 
Sowing density was 100 kg ha-1.
 The experiment surface area was around 3000 m2, a drip irrigation system was installed, maintaining the soil at field 
capacity to avoid this variable affecting the behavior of the different doses of N applied. 
 The experimental design was randomized complete block design, with seven N application treatments (0, 4, 6, 8, 10, 14, 
and 18 g m-2) and four replicates (28 experimental units). The size of each experimental unit was 10 × 4.5 m (Figure 1). 
 The total amount of N applied was divided into two parts: N was first applied during planting and then during the Z31 
stage (Zadoks growth scale is a 0-99 development scale), which corresponds to the beginning of stem elongation (first 

Figure 1. Arrangement of the experimental design.
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node visible). This scale is the most used in wheat cultivation; it describes the external morphological states of the crop, 
which involve some development processes. Before planting, soil N was analyzed to determine the baseline level of this 
element in all the experimental units. 

Aerial image acquisition
The aerial platform used was a UAV multirotor 3DR X8 + (3DRobotics, Berkeley, California, USA), the sensor used in 
this study was a modified Canon S110 near-infrared (NIR) digital camera (Event38 unmanned Systems, Akron, Ohio, 
USA), with blue, green, and NIR spectral bands (Figure 2).
 Four flight missions were conducted during the middle stage of crop development. These missions were conducted 
during the Z45, Z55, Z61, and Z69 growth stages; these stages correspond to boots swollen, ear half emerged, beginning 
of anthesis, and anthesis completed, respectively. The missions were planned at 50 m above the ground level, with a 
frontal overlap of 70% and lateral overlap of 60%. A spatial resolution with a pixel size of 1.5 cm was obtained.

Field sampling
A field sampling was conducted using the destructive method. The crop was cut as close to the soil surface as possible for 
an area of 0.25 m2, then it was weighed to determine the fresh matter. Later, the samples were dried in a stove and weighed 
to determine DM. Finally, the samples were milled, 50 g per sample were used for each experimental unit, and 28 samples 
per flight were sent to the agricultural laboratory to estimate N content (NC). This sampling process was completed for 
the four UAV flights.

Image processing and experimental data
Preprocessing was performed on the collected images; radiometric calibration was applied by using terrestrial targets with 
known reflectance. The process involved photographing the terrestrial targets at a height of approximately 2 m, the digital 
numbers (DNs) were extracted from the pixels that covered the terrestrial targets in the image using FJ ImageJ software 
(US National Institutes of Health, Bethesda, Maryland, USA). A linear regression model was obtained using the DNs and 
the known reflectance reported by the target manufacturers. Finally, all the images were corrected using this linear model.
 The images were processed using Pix4D software (Pix4D S.A., Prilly, Switzerland), ground control points were used 
to improve the precision of the generated orthomosaic map. We obtained a GeoTIFF format orthomosaic projected to the 
UTM coordinate system zone 14. The reflectance maps for the blue, green, and NIR spectral bands were obtained.
 Biomass (DM) and NC data were subjected to a process of elimination of atypical values (outliers) using the interquartile 
range method, which is a statistical estimation of the dispersion of data distribution to prevent extreme values from 
affecting the average value of the variable of interest. Then, a graph of the behavior of the biomass and the NC over time 
(flight campaign dates) was created.

Calculating vegetation indices
One of the most commonly used indexes is the normalized difference vegetation index (NDVI), which contrasts the 
reflectance in the red (centered at 670 nm) and the NIR (centered at 860 nm) bands. However, this index saturates for LAI 
values greater than 3. Due to this limitation, a series of alternative indices have been developed, including green NDVI 
(GNDVI), which is a variant of the NDVI where the red band is replaced by the green band, and blue NDVI (BNDVI), 
where the red band is replaced by the blue band. Table 1 shows the ratio of bands involved in the estimation of these 
indices and the source. Vegetation indices were estimated with Pix4D software (Pix4D S.A.) 

Figure 2. Unmanned aerial vehicle (UAV) and digital camera (S110 NIR, Canon).
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Object-oriented classification
Images were classified using the object-oriented classification technique to separate the vegetation (wheat) pixels from 
other classes, such as dried and wet soil, depending on the form, spatial, and spectral characteristics. Ecognition developer 
software (Trimble, Sunnyvale, California, USA) was used.
 The object-oriented image analysis model is primarily based on segmenting the image, where segmentation characteristics 
are established to assign a greater weight (double) to the NIR band because this band more influences the detection of 
vegetation pixels, and the scale parameter of 20 was used, which depends on the size of the object in the image that was 
intended to be segmented. The criteria of homogeneity as the form and the compactness were 0.1 and 0.5, respectively.
 After the segmentation, classification was completed using supervised classification, which required training zones to 
define the different classes present in the image, and the nearest neighbor classifier was used.

Extraction of the average value of the VI
For each experimental unit, the VI statistics (mean, maximum, minimum, and standard deviation) were extracted with the 
Zonal Statistics tool in QGis software (OSGeo, Beaverton, Oregon, USA). The representative value of each unit was an 
average index value, which was used to correlate the wheat biomass and the NC parameters.

Crop demand for N
The demand for N at any time in the crop cycle is defined as the result of the maximum crop mass and the critical 
concentration of N in the plant. The critical concentration of N in the plant is defined as the minimum concentration of N 
in the plant corresponding to the maximum crop mass (Greenwood et al., 1990). In this context, the demand corresponds 
to the minimum N absorption necessary to reach the maximum mass of a crop. This dynamic approach to crop N demand 
has been widely used in wheat crop (Schirrmann et al., 2016; Chen et al., 2019; Liu et al., 2020; Jiang et al., 2020).

Critical N dilution curve
The actual N concentration of the plant in a crop decreases, even when the supply of N is favorable, as the mass of the crop 
increases (Greenwood et al., 1986). This decrease is described empirically by a negative power function (Lemaire and 
Salette, 1984) that relates the N concentration of the plant (%N) with the mass of the crop (W in t ha-1) during the period 
of vegetative growth (before anthesis):

%N = a × W-b

where a represents the N concentration of the plant for mass W = 1 t ha-1. Its value depends on the level of supply of N in 
steady state and is also affected by the species considered. The element b is dimensionless and represents the relationship 
between the relative decrease in the plant %N and the relative growth rate of the crop. 
 When the supply of N is maintained at the minimum necessary to achieve the maximum growth rate of the crop 
throughout its growth period, then it is possible to define the critical N dilution curve (%Nc):

%Nc = ac × W-b

where ac is critical %N in the plant for a crop mass of 1 t ha-1. 
 The tools that provide remote sensing are increasingly more common in the estimation of agronomic variables. In 
the particular case of the critical N dilution curve, instantaneous measurements of N content and biomass are necessary, 
which has led the scientific community to develop methodologies that can be easily, economically, and accurately used to 
estimate these variables. 
 In this research, the critical N dilution curve proposed by Justes et al. (1994) was used; these researchers reported the 
coefficients for a wheat crop as follows:

%N = 5.35 × W-0.442

GNDVI (NIR – GREEN)/(NIR + GREEN) Gitelson et al., 1996 
BNDVI (NIR – BLUE)/(NIR + BLUE) Wang et al., 2007

Table 1. Vegetation indices used in the study, equation, and sources. 
Vegetation index Equation Source

GNDVI: Green normalized difference vegetation index; BNDVI: blue normalized difference vegetation index; 
NIR: near-infrared band values; GREEN: green band values, BLUE: blue band values.
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Diagnosis of N status in plants using the N nutrition index (NNI)
To know the status of plant N, it is necessary to use an index that indicates the situation of that element with respect to an 
optimal NC, so Lemaire and Gastal (1997) proposed the N nutrition index (NNI) to quantify N deficiency intensity or the 
excessive consumption with respect to the recommended N for a crop.
 The concentration of plant N and the absorption of plant N should be interpreted in relation to the mass of the crop. The 
critical N dilution curve determined for each crop species allows for the separation of the actual N status of the crops in 
two situations: above the N critical curve, the crops excessively consume N compared to the recommended level to reach 
the maximum biomass; and below the critical curve, the crops have a deficient supply of N. 
 Simultaneous measuring of N concentration of the plant and mass of the crop is necessary at any time during the 
vegetative growth period of the crop. The NNI is calculated as the relationship between the actual concentration of N 
(%Na) and the critical concentration of N in the plant (%Nc) corresponding to the actual mass of the crop (Wa):

 When NNI is about 1, the N state of the plant is considered almost optimal. Deviations of 1 indicate deficiency (NNI < 1; 
deficiency intensity = 1 − NNI) or excess N (NNI > 1; excess intensity = NNI − 1). Therefore, the determination of the N 
status of the plant in the objective stages of the growing period of the crop is a prerequisite for studying the response of 
the crop to excess or deficient N. The NNI is used to calculate the instantaneous N status of the crop when the %Na of the 
plant and the actual crop biomass (Wa) are determined. However, under a changing N supply in the field, it is necessary 
to determine the N status several times during the growing period of the crop. 
 Conventional or traditional methods to determine and characterize the nutritional status of crops refer to foliar analysis 
of total N, whereas in situ sampling is used to estimate biomass. A reference frame with known dimensions is used, the 
aboveground plant material remaining within the framework is cut and dried to be weighed later, thus obtaining DM per 
unit of surface that later can be extrapolated into tons per hectare (t ha-1). These methods, in addition to being site specific 
are tedious and time-consuming.

Data analysis
The relationships between the VIs (BNDVI and GNDVI) and agronomic parameters (biomass and NC) were examined 
using the determination coefficient (R2). The NNI estimation models were established using the best R2.
 The discrepancy between NNI actual and NNI predicted with the UAV was estimated with the percent error equation:

 Other statistics used in this study to assess the model performance were the root mean square error (RMSE).

 The Nash and Sutcliffe model efficiency (NSE) was used to see how well the measured vs. estimated data fits:

where NNI average is the average of the measured values.
 Percent bias (PBIAS) was also used; PBIAS measures the average tendency of the simulated data to be greater or lower 
than observed data:

NNI = %Na
%Nc

%Error = NNIactual – NNIpredicted
NNIactual

× 100 

RMSE =        ∑ (NNIpredicted – NNIactual)2

i = 1

n1
N

PBIAS = (NNIactual – NNIpredicted)
NNIactuali = 1

n∑
i = 1
n∑( ) 

NSE = 1 – (NNIpredicted – NNIactual)2

(NNIactual – NNIaverage)2
i = 1
n∑
i = 1
n∑
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RESULTS AND DISCUSSION

Flight campaigns
The results of the flight campaigns scheduled during the different phenological stages of the wheat cultivation are 
summarized in Table 2. The missions were conducted in the middle stage of the crop, corresponding to the stages of boots 
swollen (Z45), ear half emerged (Z55), beginning of anthesis (Z61), and end of anthesis (Z69). On average, 50 useful 
images were obtained by flight. During the 20 April flight, a problem occurred with the camera, so few photos were 
captured for that date. Despite this, we were able to rebuild the objects in the image. We obtained an average resolution 
of 1.5 cm per pixel, and the flight missions were executed around midday to avoid shading and the influence of the 
wind. Laliberte et al. (2010) performed flight tests up to 3:30 h prior to noon, due to the gusts of wind at their study site. 
As a result, images captured farther away from midday were more affected by shadows. To eliminate this component 
of shading, they used a hierarchical classification scheme, where they first differentiated shadows from what was not 
shadow, then used the nearest neighbor technique to identify the classes, reporting that with object-oriented techniques, it 
is possible to eliminate the shadow effect in the images to differentiate shadows from the vegetation.

Aboveground biomass (dry weight)
The biomass behaved with a positive linear trend: as flight dates advanced, dry weight of the collected samples increased. 
We observed that the rate of growth of the biomass was lower when the N treatment levels were low, whereas in high 
N dose treatments, the biomass increased more. The field data showed that the biomass is dependent on the dose of N 
applied. These results agree with data presented in previous investigations (Geipel et al., 2016; Melchiori et al., 2016). 
Figure 3 shows how biomass behavior was for the different N application levels for the four flight campaigns.

Figure 3. Behavior of biomass (dry weight) for various levels of N application over time (four flight campaigns).

29 March 2017 45 46 50 8 1.50 12:00
6 April 2017 55 57 50 8 1.59 11:30
12 April 2017 61 55 50 8 1.51 13:30
20 April 2017 69 33 50 8 1.39 12:30

Table 2. Characteristics of flights made with unmanned aerial vehicle (UAV) at different phenological stages of wheat, 
identified using the Zadoks (Z) scale, date of mission, number of images (n) captured with the sensor, flight height (A), 
ground control points (GCP), spatial resolution, and flight time.

Date Z
Resolution

(pixel size, cm)

Z45: Boots swollen; Z55: ear half emerged; Z61: beginning of anthesis; Z69: anthesis completed.

Timen A (m) GCP
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Nitrogen content 
Laboratory results for the NC of the aerial part of the plant showed that as the flight time progressed, the NC decreased 
(Figure 4). This means that as the crop advances from middle life stages to the maturity, the NC decreases. The phenological 
stage of boots swollen, corresponding to the first flight, showed the highest values of NC, whereas the lowest values were 
observed at the end of anthesis, which corresponds to the last flight mission. Similarly, for flight 1 the slope of change was 
greater for the different treatments, whereas in flight 4, NC values in all treatments were practically horizontal.
 The experiment showed a tendency for a higher percentage of NC with the increase of N dose, i.e., N application had 
an effect on the NC in wheat stem and straw. These findings agree with results reported for different cereals (Sure et al., 
2006; Emam et al., 2009; Nikolic, 2009; Ballesteros et al., 2016).
 In flight 3 (beginning of anthesis), we recorded an atypical decrease in the value of NC. When adjusting the trend line 
and estimating the R2, this value was not used because it was considered not representative compared to the other results.

Correlation of vegetation indices with biophysical variables 
The results of the correlations between VIs and biophysical variables show a strong relationship. GNDVI and biomass 
(expressed as dry weight) during the flights 2 and 3, showed the highest R2 (0.84 and 0.79, respectively; Figure 5). BNDVI 
and biomass demonstrated a high goodness of fit to flights 1 and 4 (R2 = 0.62 and R2 = 0.68, respectively; Figure 5).
 GNDVI index was the highest and lowest goodness of fit to biomass data with R2 ranging from 0.21 to 0.84. The 
lower value could have been caused by the onset of senescence and therefore the yellowing of the plant. Prabhakara et al. 
(2015) mention that chlorosis may lead to inaccurate estimates of aboveground biomass when using vegetation indices to 
measure greenness of crops, regardless of species.

GNDVI: Green normalized difference vegetation index; BNDVI: blue normalized difference vegetation index.

Figure 4. Behavior of N content for various levels of N application over time.

Figure 5. Relationship between vegetation index (GNDVI and BNDVI) and biomass for the four flights: F1 Boots swollen 29 
March 2017, F2 ear half emerged 6 April 2017, F3 beginning of anthesis 12 April 2017, and F4 anthesis completed 20 April 2017.



415CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 81(3) JULY-SEPTEMBER 2021

 BNDVI presented more stable R2 values, ranging from 0.62 to 0.78, three of the four flights presented very similar 
values. We observed that the greater the biomass, the greater the value of VIs for each flight. Hirzel et al. (2020) mentions 
that increasing N fertilization rate increases biomass and grain yield.
 When analyzed together, it can be seen that after flight 2 the indices showed a decrease, despite the fact that the biomass 
continued to grow. Myneni and Williams (1994) mention that at higher biomass, especially in plants with planophile leaf 
structure, the sensitivity of the normalized difference vegetation index (NDVI) and other indices saturates as the canopy 
closes, and additional increases in biomass do not result in increased reflectance.
 BNDVI and GNDVI showed a clear proportional relationship between the index and biomass up to ear half 
emerged stage. 
 Using vegetation indexes to identify differences in biomass in an agricultural field is viable since VIs differ during the 
growth of the crop, similar to the measured data in the field. These results are consistent with results reported previously 
by several studies (Wang et al., 2007; Campos et al., 2018). 
 The normalized difference vegetative indexes (NDVI) based on visible and near infrared reflectance (Vis-NIR NDVI) 
cannot differentiate the amount of biomass when there is too much vegetation, and Vis-NIR NDVI does appear to be a 
better predictor of biomass, specifically at earlier stages of growth (Moges et al., 2004; Gitelson, 2004; Bendig et al., 
2015; Prabhakara et al., 2015; Zheng et al., 2019).
 With regard to NC, the results show that the VIs during the four flight campaigns are linear (Figure 6). GNDVI was 
more highly correlated than BDVI, and the adjustment curve has an R2 up to 0.81 to GNDVI (Figure 6, F2), which is 
consistent with previous studies (Moges et al., 2004; Zhang et al., 2016; Zhao et al., 2018; Yang et al., 2020). The first 
three flight dates show a trend where the 0 g m-2 treatment had lower VIs values, and the 18 g m-2 treatment had higher 
VIs values, as expected. However, for the last flight date, the GNDVI values and NC showed less linearity and the 8 g 
m-2 treatment had a smaller GNDVI than the 0 g m-2 treatment, contrary to what was expected. This could be due to stress 
experienced by the crop, caused by other than NC.
 After flight 2, the VIs began to decrease, which may correspond to the fact that they suffered saturation. In flight 2 the 
range of variation of the indices was very little.
 Overall, the results presented in this research show that GNDVI is a good predictor of NC, providing a non-destructive 
alternative tool for monitoring NC. Other investigations reported similar results (Hatfield et al., 2008; Candiago et al., 
2015; Magney et al., 2017).
 Low levels of canopy cover may cause inaccuracies due to background reflectance of soils and crop residues interfering 
with the vegetation signal. The determination of pure vegetation pixels using the object-oriented classification technique 
helped to overcome the limitations caused by ground reflectance, shadows and other artifacts within the images.

GNDVI: Green normalized difference vegetation index; BNDVI: blue normalized difference vegetation index.

Figure 6. Relationship between vegetation index (GNDVI and BNDVI) and N content (NC) for the four flights: F1 Boots 
swollen 29 March 2017, F2 ear half emerged 6 April 2017, F3 beginning of anthesis 12 April 2017, and F4 anthesis 
completed 20 April 2017.
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 Figure 7 shows the variable crop response to the different rates of N application. It shows the capacity of the sensor to 
determine the spatial variability of the crop. Also, it is observed that the two vegetation indices (BNDVI and GNDVI) are 
sensitive to changes in the crop N content. In addition, this type of map is useful as it allows to the farmers, assimilate in 
an easier way, the crop status.

Diagnosis of plant N status
The critical N dilution curve refers to the minimum concentration of N that allows the crop to achieve its maximum 
growth rate. This curve was used to diagnose the wheat crop N status as optimal, in excess or in deficiency status.
 Figure 8 shows the behavior of the actual N content to field data with respect to the dilution curve proposed by Justes 
et al. (1994) for all N treatments and the four flight campaigns. The N content remained relatively close to the proposed 
model. The N treatments used for flight 1 (boost swollen stage) were enough to maintain an optimal NC in the plants, 
except for the 0 g m-2 treatment. However, for the flight 2, only three treatments (10, 14, and 18 g m-2) were at or above 
the optimal N content. The rest of the treatments were insufficient to achieve an optimal plant NC.  
 Obtained yields fluctuated from 4.7 to 6.4 t ha-1 corresponding to treatments from 0 (0 kg ha-1) to 18 g m-2 (180 kg ha-1), 
which is consistent with results reported by Paquini et al. (2016) in a study carried out in the same region.
 A high correlation was observed between measured and estimated data (Figure 9). A percent error of 6.17% was 
found between estimated and measured data. The UAV model was able to estimate the NNI with an acceptable accuracy. 
Regression statistics showed that the slope was close to the 1:1 line. Biomass and NC models showed that measured and 
estimated NNI matched satisfactorily with an R2 = 0.91, RMSE = 0.06, NSE = 0.91, PBIAS = -0.23%.
 The results reported here are consistent with those presented by Cilia et al. (2014) and Caturegli et al. (2016). This 
study show that the use of VIs derived from optical sensors and the NNI is a promising methodology to diagnose wheat 
N status.

T0: 0 g m-2; T4: 4 g m-2; T6: 6 g m-2; T8: 8 g m-2; T10: 10 g m-2; T14: 14 g m-2; T18: 18 g m-2.

Figure 7. Variability in vegetation indices responses to different N application rates: blue normalized difference vegetation 
index (BNDVI) (a) and green normalized difference vegetation index (GNDVI) (b).
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CONCLUSIONS

Vegetation indices (VIs) estimated from remote sensors mounted on unmanned aerial vehicles (UAVs) are useful to 
detect the wheat crop heterogeneous nutritional needs at the plot level. The VIs are sensitive to the changes that occur 
in the some phenological stages of a wheat crop. Green normalized difference vegetation index (GNDVI) showed great 
potential for biomass estimation and N content in wheat crop. GNDVI showed the highest determination coefficient 
during the ear half emerged stage.
 In grow stages that experience the effects of index saturation at high biomass and leaf yellowing should be considered 
different VIs to ensure accuracy in estimating biomass and N content.
 Also, it was found that a modified commercial camera, provide an economical and reliable option to monitor these 
wheat biophysical variables. UAVs are an affordable alternative for capturing high-resolution spectral and temporal 
images that permit to diagnose the wheat N status.

Figure 9. Field measure vs. unmanned aerial vehicles (UAV) estimated N nutrition index (NNI).

Figure 8. Wheat N status for different used treatments compared to the critical N dilution curve (CNDC) proposed by 
Justes et al. (1994).
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