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ABSTRACT

Intercropping has benefited the global agricultural sector in several ways. It is a critical farming practice for long-term 
productivity, agro-ecological improvement, land management, and land use. It is a well-known method to increase soil 
health and crop productivity. The impact of intercropping on the yield and production of maize (Zea mays L.) and soybean 
(Glycine max (L.) Merr.) has been investigated at the leaf, stem, and root level. However, there is limited information 
about how to determine the best planting density for maize-soybean intercropping (MSI). The benefits and drawbacks 
of MSI are discussed in this review. Intercropping maize and soybean improves resource use, lodging resistance, and 
pest and weed control according to the existing research. Furthermore, soybean has low light use efficiency (LUE) and 
radiation use efficiency (RUE) due to the deep shade created by the maize canopy. As a result, more research is required 
to discover the optimal planting density to improve light and radiation efficiency.
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INTRODUCTION

Intercropping is an agricultural technique used to grow two or more different crops in alternate rows on a given plot of 
farmland at the same time during their growing season or in a growing period (Lithourgidis et al., 2011; Mousavi and 
Eskandari, 2011; Federer, 2012). A tall crop is often intercropped with a short crop in this farming system (Oseni, 2010; 
Undie et al., 2012), such as intercropping a legume and cereal (Undie et al., 2012).
	 Intercropping in China, dates back over 10 centuries and is usually known as an antiquated and outdated farming 
system (Lithourgidis et al., 2011). Studies promote this ancient cropping system as a substitute for more sustainable 
agriculture with low input and stabilized yield (Knörzer et al., 2009; Ren et al., 2017). However, there is a high and 
growing demand of the food supply due to the exponentially increasing world population (Tilman et al., 2011; Elferink 
and Schierhorn, 2016; Lulie, 2017); it was predicted by the United Nations on 13 June 2013 that the population would 
increase by 33% from 7.2 billion to 9.6 billion by 2050 (UN, 2013). As a result, there is an urgent need for increased, long-
term food production (Xu et al., 2020).  This cultivation strategy has proven to be beneficial in several ways, including 
maintaining a rapidly growing population (Bybee-Finley and Ryan, 2018; Zaeem et al., 2019). 
	 Unlike other cropping systems, intercropping increases crop competitiveness and improves resource use on a given 
area of farmland (Chang et al., 2020). These crops frequently vary in nutritional requirements, rooting ability, height, 
canopy structure, and the  complimentary use of intercrop growth resources (Lithourgidis et al., 2011). There is also 
decreased disease transmission, which increases crop yields (He et al., 2011; Kebebew et al., 2014; Bybee-Finley and 
Ryan, 2018; Iqbal et al., 2019). The ecological and biological benefits of intercropping are well documented. 
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	 Intercropping systems provide 15% to 20% of the world food supply (Lithourgidis et al., 2011). It was reported by Xu 
et al. (2020) that intercropping has been dubbed as the “new green revolution” because it is able to increase land efficiency 
by using information on how species complement one another and provide a way to achieve sustainable agricultural 
intensification. It has become the best cropping system for maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), 
and it also plays a critical role in contributing to modern and sustainable agriculture.
	 Intercropping is an effective and sustainable cropping system for maize (cereal) and soybean (legume). It has often 
been known to be much more effective compared with monocropping even when practiced with scarce resources (Ouda 
et al., 2007; Ren et al., 2017). This also produces high yielding maize components such as yield per plant, weight, 1000 
kernel weight, and leaf area (He et al., 2011). Intercropping legumes with maize improves the soil by fixing N and other 
minerals and converting them from inorganic to organic forms that are accessible for crop absorption. This completely 
or largely substitutes N fertilization and leads to saving resources (Li et al., 2013). In a low input and high-risk context, 
the maize-soybean intercropping (MSI) system offers significant benefits to small landholder farmers (Kebebew et al., 
2014; Iqbal et al., 2019).  
	 Despite these benefits of MSI, the synergetic effects of this system on the soil, stem, leaf, and root of the maize plant 
are still unknown. There are several shortcomings of this system that should be addressed, such as the incompatibility with 
mechanization (planting and harvesting), microclimate conducive to the outbreak of pathogenic (fungal) diseases, high 
maintenance cost (Okigbo and Greenland, 1976; Gebru, 2015), low light use efficiency (LUE), radiation use efficiency 
(RUE), and low relative soybean yields (Iqbal et al., 2019). 
	 One of the objectives of this study was to describe in detail the types of intercropping systems and the various 
advantages they provide for soil nutrient fixation and plant development. Another objective was to discuss the important 
limitations related to maize-soybean intercropping (MSI) that hinder good agronomic practices and try to provide future 
possibilities. This paper provides a critical and intensive review of studies to assist agronomists in future research to 
enhance agricultural yield and also save resources.

TYPES OF INTERCROPPING

Row intercropping
More than one crop is simultaneously cultivated in this intercropping system; one or more crops are sown in fixed 
rows and a crop or other crops can be immediately cultivated in the rows or randomly with the first crop (Mousavi and 
Eskandari, 2011; Maitra et al., 2019) (Figure 1). Ram and Meena (2014) conducted a field experiment in the dry region 
of Rajasthan to test alternative pearl millet and mung bean row ratios. The treatments included 1 pearl millet, 1 mung 
bean, and 10 pearl millet with mung bean treatments in rows at various ratios. These treatments with 1:7, 2:6, and 1:3 row 
ratio, respectively, outperformed the individual and other intercropping treatments for pearl millet equivalent yield, land 
equivalent ratio (LER), aggressiveness, net returns, benefit-cost ratio, and nutrient uptake. Hooda et al. (2004) and Kuri 
et al. (2012) also reported that intercropping pearl millet with green gram produced the highest net return and benefit-cost 
ratio over an individual pearl millet crop.

Figure 1. Illustration of traditional maize and cabbage intercropping (Feike et al., 2012).
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Mixed intercropping
This type of intercropping involves growing multiple crops all at once with no definite row layout (Figure 2). This method 
of intercropping is widespread in labor-intensive subsistence farming and is suitable for grass-legume intercropping in 
pastures (Ofori and Stern, 1987; Maitra et al., 2019). Studies using totally mixed intercropping have been reported to raise 
farmer income, improve diversity and ecosystem functions, alter soil biota, protect and improve soil quality, match feed 
preferences and cultural expectations, and increase variety and ecosystem functions (Finn et al., 2013; Duchene et al., 
2017; Bi et al., 2019). In addition, mixed intercropping has been linked to various ecological benefits such as enhanced 
resource use in total niche space (niche differentiation), positive interspecific interactions, diversification effects, and 
collection effects (Bi et al., 2019).

Relay intercropping
This involves planting one or more crops within an established crop in such a way that the final stage of the first crop 
corresponds with the initial growth stage of the other crop(s) (Leihner, 1983) (Figure 3). In other words, a second crop is 
planted after the first has attained reproductive maturity or is close to maturity but is not yet ready for harvest (Mousavi 
and Eskandari, 2011; Maitra et al., 2019). 

Figure 2. Illustration of mixed intercropping of different plants on a plot of land.

Figure 3. Schematic depiction of a maize-soybean relay intercropping system (Raza et al., 2019a).
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	 According to Echarte et al. (2011), in leguminous and cereal crops, relay intercropping is suggested because it has an 
overall economic profitability, reduces insects, weeds, and pests, is environmentally beneficial, and has high yields. Soybean 
is normally the late planted crop in a maize-soybean relay intercropping system (Echarte et al., 2011). Chen et al. (2017) 
indicated that the LER frequently ranges from 1.7 to 1.8 when both crops are planted at their optimal planting density. This 
intercropping method is well known because the intercrops do not intensively compete throughout their co-growth period, 
which enables a more balanced use of land, light, and water (Wu et al., 2017; Feng et al., 2019; Raza et al., 2019b).

Strip intercropping
This cropping system consists of cultivating two or more crops in separate strips that are wide enough to allow autonomous 
cultivation but narrow enough to allow crop convenience (Leihner, 1983; Maitra et al., 2019) (Figure 4). A maize-soybean 
strip intercropping model has been developed and used over time. Strip intercropping allows maize and soybean to grow in 
close proximity in thin strips. The primary focus of this planting method is based on three important strategies: increased 
row spacing, reduced inter-plant spacing, and optimal cultivar screening. This intercropping method is considered 
excellent for mechanical cultivation and crop harvesting; it also contributes to the appropriate competitiveness of two 
intercropped species (Iqbal et al., 2019) (Figure 5). Resource use (as evidenced in group water use efficiency), weed, pest, 
and disease management, increased yield, economic benefits, and improved soil fertility and N acquisition are some of the 
advantages of maize-soybean strip intercropping (Iqbal et al., 2019). The high RUE and LER are two main variables that 
make strip intercropping attractive in different parts of the world (Wang et al., 2015; Yang et al., 2015b; Liu et al., 2017b).

Figure 4. Schematic depiction of maize-soybean strip intercropping at different distances (Raza et al., 2019b).

Figure 5. Illustration of the advantages of maize-soybean intercropping (based on Iqbal et al., 2019). 
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	 In a study by Liu et al. (2017b), the intercepted photosynthetically active radiation (PAR) and RUE in maize and 
soybean were evaluated as compared with monocropping under various intercropping systems, including different strip 
intercropping configurations (SI1, SI2, and SI3 based on the extended row crop radiation transmission model) and row 
intercropping configurations (row intercropping based on the horizontally homogeneous leaf area model). The PAR and 
RUE intercepted intercropping systems were found to be higher than monocropping systems. In addition, PAR intercepted 
by soybean in strip intercropping was 1.35 times higher than in row intercropping, and SI2 (0.4 m maize row spacing and 
1.6 m distance between maize strips) was suggested as the best by researchers.    

ADVANTAGES OF MAIZE AND SOYBEAN INTERCROPPING 

Increased soil fertility through nutrient acquisition
Intercropping two crop species, notably cereal (maize) and legume (soybean) crops, can provide significant advantages 
to the soil (Bybee-Finley and Ryan, 2018). In a study conducted by Zaeem et al. (2019), it was found that intercropping 
silage maize with forage soybean is a good way to increase forage production and also improve soil health in cool 
weather. The ability of legumes to fix atmospheric N in the soil (Phiri et al., 2013) provides a cheaper soil fertility option. 
Intercropping non-N-fixing (maize) and N-fixing (soybean) crops has been reported to increase yield and productivity 
over monocropping (Seran and Brintha, 2009; Thayamini and Brintha, 2010). Soybean fixes N in the atmosphere rather 
than competing with maize for soil N in the absence of N fertilizer (Thayamini and Brintha, 2010). Habineza et al. (2018) 
investigated the influence of MSI on soil fertility using three soybean varieties (hybrid SB19, local var. GAZELLE, and 
hybrid TGX1990-5F). These researchers observed that the hybrid TGX1990-5F had more nodules per plant, fixed more 
N, and had higher levels of other nutrients (organic C, K, and P). After harvest, TGX1990-5F was in the middle at both 
locations and rainy seasons, compared with other varieties. After harvesting, soil pH was sufficiently moderate to support 
the next crop. Given that TGX1990-5F can lower the cost of N fertilization by naturally fixing N, it was suggested that 
small-scale farmers use it for intercropping with maize (Habineza et al., 2018). Furthermore, soybean straw (decayed 
roots and fallen leaf debris) is ploughed back into the soil after the intercrop is harvested  to deliver N and other nutrients 
to prepare for the next crop (Lulie, 2017).

Effects of pests, disease, and weed management on intercropping
Pests, disease, and weeds stifle productivity in MSI, causing high larval density at an early stage, particularly in maize 
monocropping. This is evidenced by its tunneled stem and broken cobs, thus reducing maize yield. Therefore, pesticides 
and herbicides have been used, but they have produced harmful effects on the environment and human health (Paoletti and 
Pimentel, 2000). Research aimed at reducing the impact of weeds, pests, and illnesses has gained momentum (Ramert et 
al., 2002; Mousavi and Eskandari, 2011; Iqbal et al., 2019).  
	 The population of beneficial insects has also expanded, which keeps pest populations under control and reduces the 
need for dangerous chemicals (Maitra et al., 2019). Intercropping two other crops on the same piece of land alters the 
condition and environmental quality of the host plant, which affects the ability of the insect pest to identify and recognize 
it (Lulie, 2017; Maitra et al., 2019).  
	 In a study conducted by Chabi-Olaye et al. (2005), it was observed that high larval density (21.3% to 48.1%) reduced 
plant development in a maize monocrop compared with a maize intercrop. Maize monocrops had more tunneled stems 
and damaged cobs, which resulted in lower maize yields.  Intercropping is known to be more effective than monocropping 
to suppress weeds, although its efficiency varies according to its ability to invade weed resources or suppress weed 
development through allelopathy (Girjesh and Patil, 1991; Mousavi and Eskandari, 2011). According to Lulie (2017), 
intercropping provides superior weed management than monocropping due to a more competitive effect on weeds over 
time and area. When compared to monocrops, weed density and DM were lower in maize-legume intercrops (Bilalis et 
al., 2010). This was attributed to the fact that weeds had less access to light.
	 Gao et al. (2014) also indicated that intercropping significantly lowered disease incidence and the severity index of 
soybean red crown rot. It was further detected that when soybean was cultivated in close proximity to maize (Intercropping 
System Control 2 [ISC2], 5 cm apart), disease severity was considerably reduced (Gao et al., 2014). Intercropping with 
maize can significantly minimize or even eliminate the occurrence and development of red crown rot in soybean growth 
when the intercropping planting distance is taken into account. 
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Intercropping enhances maize lodging resistance
According to Raza et al. (2020), lodging is one of the most persistent constraints in the MSI system, and poses a severe 
danger to agricultural development and sustainability. Several of the negative effects of lodging in maize include 
mechanical damage, disease infections, and decreased plant height that reduces light interception effectiveness and 
results in harvest loss (Lulie, 2017). However, when lodging resistance is enhanced in intercropping, not only does it 
improve harvestable yield or crop quality but also harvest efficiency (Lulie, 2017). Maize, which is prone to lodging when 
intercropped with legumes such as soybean, has been found to increase lodging resistance when sown at the correct time 
and density (Raza et al., 2020).  

Intercropping efficiency in resource use and productivity
The higher uptake and use efficiency of nutrient resources and low input cultivation makes intercropping a more efficient 
system under poorer soil and environmental conditions (Knörzer et al., 2009). In a study of intercropping complementarity 
of separate wheat, canola, and field pea crops and intercrop combinations, Szumigalski and Van Acker (2008) evaluated 
the effects on LERs, canopy light interception, soil moisture, water use, and water use efficiency  with/without in-crop 
herbicides at two field sites in Manitoba, Canada. Surplus yield by intercropping was attributed in part to the complementarity 
of resources between different crops among the intercrops. Intercropping also benefits the efficient use of the resources 
responsible for growth such as water, solar energy, and soil nutrients (Mousavi and Eskandari, 2011). Component crops 
used available natural resources differently when intercropped than when grown separately (Mousavi and Eskandari, 2011; 
Lulie, 2017), especially when they had different growth and maturity periods, which caused them to have higher demand 
for resources at different times and be more productive (Fukai and Trenbath, 1993; Maitra et al., 2019).   

Intercropping for erosion control
Intercropping protects the soil from desiccation and erosion by supplying year-round or at least longer-term ground 
cover than monocropping (Gebru, 2015). Shallow roots bind the soil at the surface in MSI, which improves air quality 
and decreases soil erosion (Lulie, 2017). Rain can clog surface pores, which prevents water from penetrating the soil and 
increases surface erosion. These legumes are used as cover crops in intercropping to keep rain from hitting the bare soil, 
which prevents soil compaction (Thayamini and Brintha, 2010; Maitra et al., 2020). Tall crops, such as maize, also act as 
wind barriers for smaller leguminous crops, such as soybean, by reducing wind speed and preventing saltation and wind 
erosion (Thayamini and Brintha, 2010; Gebru, 2015; Maitra et al., 2020). Five treatments (only maize, maize intercropped 
with bean, maize intercropped with cowpea, and maize intercropped with bean and cowpea) were examined for runoff 
and soil loss in a maize-based intercropping research study (Kariaga, 2004). Maize intercropped with cowpea obtained the 
lowest runoff in the cropped plot, indicating that cowpea is better at concealing the soil surface and, when intercropped 
with maize, provides better soil depletion protection. It also demonstrated that maize-legume intercropping is beneficial 
to control soil erosion.

Increased yield and land equivalent ratio (LER)
Maize-soybean intercropping is conducted entirely with the aim of increasing yield, particularly for small farmers and 
in countries with short growing seasons. The LER, area time equivalent ratio, and aggressiveness are some of the most 
common methods to calculate intercropping yield and efficiency. Gebru (2015) mentions that the LER is the most widely 
used indicator of biological efficiency and yield per capita output. Whenever LER > 1, intercropping is more profitable 
than monocropping, and when LER < 1, intercropping is much less beneficial. Intercropping maize and soybean is 
beneficial for the LER (Jinchi et al., 2005; Gao et al., 2010; Yang et al., 2015a; Ren et al., 2017). Under the supervision 
of the East-West Center in Hawaii, a study was conducted at 14 locations over a 3-yr period to verify the effectiveness of 
a maize-soybean intercrop with the respective individual crops at various N fertilization levels (Ahmed and Rao, 1982). 
At all the studied locations and across all N levels, LER > 1. It was also determined that the maximum LER values were 
recorded at a 0% N level. Gao et al. (2010) reported that the LER of the maize-soybean strip intercropping system was 
1.19 in 2007 and 1.31 in 2008 (LER > 1), indicating that the maize-soybean strip intercropping system has significantly 
higher land use efficiency and biological efficiency. A study with the intercropping of sunflower and soybean by Nawar et 
al. (2020) also showed that intercropping increases LER.
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LIMITATIONS OF MAIZE-SOYBEAN INTERCROPPING

Intercropping has several drawbacks, including a restriction in the use of machinery for seeding, weeding, and harvesting. 
It is difficult to manage individual crops in intercropping, for example, fertilizer management and herbicide use to contain 
weeds. Intercropping also needs more labor per unit area, and it can decrease the production of each crop if not effectively 
managed (Aye and Howeler, 2012).
	 Mechanization procedures during planting and harvesting are typically problematic for MSI. Maize is typically 
harvested first, which damages soybean and hinders harvesting in general (Okigbo and Greenland, 1976; Gebru, 2015). 
Low soybean yield, which is mostly due to a reduction in intercepted PAR, is commonly cited as a major constraint for 
MSI (Echarte et al., 2011; Undie et al., 2012). The maize canopy cover in intercropping can create a microclimate with 
higher relative humidity, which is unfavorable for soybean growth and could even promote outbreaks of pathogenic fungal 
diseases. However, over the long term, choosing an appropriate ratio for maximum intercrop yield is somewhat more 
challenging. For example, maintenance costs during weeding for MSI are typically substantial, especially in countries 
with labor shortages (Gebru, 2015). 

EFFECT OF INTERCROPPING ON MAIZE AND SOYBEAN PLANTS, SOIL, 
AND ROOTS 

Effect on plants
Regarding the performance of maize functioning and the plant as a whole, MSI has increased plant height, stem, 
chlorophyll content, fodder production, and grain yield (Ren et al., 2017; Zaeem et al., 2019).  
	 On the contrary, MSI using different spatial patterns frequently results in different shade and light environments above 
the soybean canopy, which directly affects soybean leaf structure (anatomic) and photosynthetic fluorescence properties 
(Fan et al., 2017). The light environment of the lower soybean plant is affected by the deficiency in the quantity and 
quality of light caused by shade from the taller maize plant. This could result in variations in internode length, plant 
height, leaf diameter, and branching in the soybean crop, and growth variations in LUE, growth rate, harvest index (Liu et 
al., 2017a), and grain yield (Ren et al., 2017). A study by Nawar et al. (2020), in which sunflower was intercropped with 
soybean, showed that the shading effect caused by the development of the sunflower canopy resulted in an unfavorable 
growth environment around the soybean plants, which enhanced some hormonal activity and led to more node formation 
and stem elongation. Stem elongation was reported as one of the mechanisms used by plants to increase their ability to 
capture more solar radiation. On the long run, this decreases the stem diameter of soybean and reduces its ability to resist 
lodging. Liu et al. (2017a) found that poor light intensity caused soybean growth to slow down, resulting in smaller leaf 
size and stem circumference and leading to decreased soybean production in MSI. These soybean-related restrictions 
are obviously linked to maize canopy development (Chui and Shibles, 1984; Liu et al., 2017a). In addition, maize shade 
affects the stem circumference of soybean and lowers its lodging susceptibility (Liu et al., 2016; Raza et al., 2019a; 
Cheng et al., 2020). Low PAR and the ratio of red light to far red light, which decreased because of the maize canopy, also 
produce soybean stem vining in maize-soybean relay strip intercropping. This results in a long, thin stem with less lodging 
resistance (Liu et al., 2015; Hussain et al., 2019).

Effect on soil
Intercropping is a successful and attractive method to promote soil health and quality, yield, fertilizer use efficiency, and 
long-term agricultural production (Fu et al., 2019; Zaeem et al., 2019). The soil nutrient balance and active microbial 
communities can be used to analyze data concerning soil health. An experiment conducted in the cool environment of 
the boreal ecosystem (Zaeem et al., 2019) discovered that silage maize planted with forage soybean were suitable to 
increase forage cultivation. When cultivated on Podzols in a cool temperature boreal habitat, this is accomplished through 
enhancing active biological processes, rhizosphere soil acid phosphatase activity, and accessible P.
	 Zaeem et al. (2019) found that rhizosphere soil acid phosphatase activity was significantly (p < 0.05) higher, especially 
in the intercropping treatment compared with monocropping; this implies that intercropped maize planted on Podzols can 
use organic P more efficiently than monocropped maize.
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	 Fu et al. (2019) revealed that the N uptake of maize grain was superior in MSI than in maize monocropping. Moreover, 
Chen et al. (2017) stated that a maximum maize yield can be achieved even with limited soil N treatment with MSI. This 
is because maize is less competitive for soil N, allowing it to use more soil N for growth, whereas soybean relies on 
atmospheric nitrification (Fan et al., 2018).   
	 In intercropping practices, interspecies connections are also important for plant resistance (Zhang et al., 2020). Soybean 
is a regenerative crop that can replace soil nutrients (Zaeem et al., 2019).

Effect on roots
Root growth is a major factor in MSI  production. Stronger root development can explore a larger soil volume to adequately 
exploit the water resource in the soil profile and increase intercrop transpiration. Intercropping benefits the root density 
of maize. Ren et al. (2017) indicated that MSI increased root length density in both maize and soybean when compared 
to monocropping. Zhang et al. (2020) also found that intercropping improved the ability of maize root exudate to identify 
zoospores, inhibit zoospore motility, and decrease cystospore formation in a dosing system.
	 Fusarium root rot has been identified as one of the most devastating soil-borne infections that affects soybean growth 
and output, resulting in a significant economic loss (Arias et al., 2013; Chang et al., 2020). On the contrary, intercropping 
favors the impact on soil microbial populations, lessens pathogen attacks, and prevents soil-borne disease (Boudreau, 
2013; Gao et al., 2014; Chang et al., 2020). Chang et al. (2020) also mentioned that intercropping maize-soybean relay 
strips decreases soybean root rot and modifies the variety and virulence of Fusarium species. As a result of maize-soybean 
relay strip intercropping, it was detected that F. fujikuroi, F. proliferatum, and F. verticillioides are mildly virulent (Chang 
et al., 2020). This suggests that intercropping maize and soybean is critical for reducing soybean root disease. It would 
also increase root formation in soybean, as evidenced by the root length density of intercropped soybean that is higher 
than in monocrops (Gao et al., 2010). Some of the advantages and disadvantages of intercropping are shown in Table 1.

FUTURE PROSPECTS OF INTERCROPPING

Improved root interactions
Several studies have been carried out to determine the best strategies to overcome the numerous drawbacks of intercropping 
systems. The mechanism of collaborative root connections in intercropped agriculture can be used in MSI. These can 
consist of soil exploitation via bacteria and fungi, N exchange between legume and non-leguminous plants, and soil-
plant mechanisms that modify the deployment of plant development resources, such as amino acid exudation, enzymatic 

Table 1. Advantages and disadvantages of intercropping (modified from Chui and Shibles, 1984; van der Bom, 2010). 

Positive effect Negative effect

Not necessary to rely on a single crop. 

Less frequent pesticide and fertilizer use. 
Promotes flora and fauna of the area. 

Allows a gradual shift in thinking from more reasonable external 
inputs to more environmentally friendly technologies. 
Agricultural land diversification.

Biologically, intercropping has advantages over monocropping.

Improved crop output as a result of the better use of local resources.

Enhances root length density, allows plants to explore a larger soil 
volume, and maximizes water and nutrient consumption to promote 
plant growth and output.

Possibility that harvesting one crop component will damage the 
other.
Intercropping systems are usually a challenge to mechanize.
Possibility of promoting the spread of harmful flora and fauna for 
the crops.
Opposed to the social, economic, and political systems that are 
currently in place.
Compared with individual crops, cropping systems are more 
complicated and less understood.
Believed to be economically inefficient in many actual economic 
systems.

Possibility of nutrient overextraction.

When competing with another plant, the plant could generate more 
roots and less grain production than when grown separately.

Plant

Soil

Roots
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activity, acidification, competition-induced modifications of root architecture, exudation of growth-promoting chemicals, 
and bio fumigation, all of which can be quite useful to pursue research (Hauggaard-Nielsen and Jensen, 2005). Due 
to significant interspecific competition for plant growth components, these root-facilitating interactions are particularly 
important in nutrient-poor soils and low input agro-environments (Ehrmann and Ritz, 2014). 

Improved genetically modified breeds
In a typical intercropping system, maize provides shade for the shorter crop, which is soybean in this case. When grown 
in the shade, most soybean cultivars display stem elongation, lodging, and reduced leaf size, all of which result in lower 
yields (Liu et al., 2016). Most shade-sensitive soybean strains in a maize-soybean strip intercropping system exhibit stem 
elongation and lodging, which directly influence soybean yield according to several analyses (Liu et al., 2015).
	 As a consequence of their shade-tolerant traits, a growing number of soybean landraces have been found. Several 
landraces are being used to breed cultivars for intercropping models in various regions worldwide, including China. Using 
a variety of semi-dwarf but high-yielding maize hybrids can also help reduce the shade effect on intercropped soybean 
(Gong et al., 2014). Semi-dwarf cultivars allow proximity planting, which reduces the differences in biomass and leaf 
area index among maize and soybean intercropping systems (Yang et al., 2014). The density of strip-crop intercropping is 
maximized when used with compact planting practices.  

Improved mechanized systems
Agricultural machinery for sowing, fertilizing, and harvesting can be designed or modified for numerous intercropping 
practices. A combination of seed drill and fertilizer drill for a typical maize-soybean strip intercropping system in the 
field is a good idea for future research. Using agricultural machines designed for this approach would considerably 
increase labor productivity. These ground-breaking advances in our modified intercropping strategy have the possibility 
to significantly increase soybean productivity in China and other developing countries (Du et al., 2018).

Improved planting density and distance
Careful management of the planting density, which is controlled by the planting ratio and distance, can improve 
intercropping. This could be accomplished by designing the planting pattern in narrow and wide rows, which allows maize 
plants to grow in narrow rows and soybean plants to grow in wide rows all the while preserving the appropriate distance 
for soybean plants to receive adequate light for optimal growth and development. Designing an efficient intercropping 
planting setup with a maximum shade density ranging from 20% to 30% (Raza et al., 2019b) to increase the soybean crop 
seed production in an intercropping system could be a promising future research topic. 
	 The compact maize ‘Zhendan-958’ has a smaller shade area, making it better for relay cropping. Compact type maize 
cultivars were found to be more useful to reinforce production, which help to create better light conditions for sweet 
potato development (Yulong et al., 2017).

CONCLUSIONS

The benefits of maize-soybean intercropping (MSI) are largely noticeable in maize. In this study, it was revealed that MSI 
has become a popular crop production system in developing countries; it provides significant benefits in terms of resource 
use efficiency and productivity, erosion control, soil fertility through nutrient acquisition, pest, disease, and weed control, 
lodging resistance, and increased yield. However, mechanization, shading, and planting ratio of MSI still have certain 
limitations. Further study should be focused on finding solutions for these limitations.
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