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ABSTRACT 
 
Some agroecological pest management systems manipulate insect behavior. The push-pull systems are the most 
functional implemented, reducing the insect-pest density and modifying its distribution. The present work 
analyzed the spatial distribution of incidence and severity of fall armyworm (FAW) (Spodoptera frugiperda (J.E. 
Smith), Lepidoptera: Noctuidae), and soil moisture and temperature in maize (Zea mays L.) crops of a mosaic of 
agroecosystems predominated by push-pull systems established in Yautepec, Morelos, Mexico. Univariate and 
multivariate spatial estimates were performed by geostatistical analysis applying ordinary kriging and cokriging, 
respectively. The results indicated that FAW incidence and severity presented an aggregated spatial distribution 
and soil moisture and temperature, a more continuous distribution. The estimated spatial distributions in the third 
week indicated that FAW incidence in push-pull systems varied between 10% and 40%, and in maize 
monocultures, between 35% and 90%. Fall armyworm damage severity ranged between 20% and 70% in 
monocultures and between 1% and 25% in the push-pull systems. 
 
Key words: Cokriging, fall armyworm incidence and severity, kriging, soil temperature and moisture, 
Spodoptera frugiperda. 
 

INTRODUCTION 
 
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a polyphagous insect that feeds on plants of 353 
species belonging to 76 families (Montezano et al., 2018). This generalist habit allows it to colonize various 
agroecosystems with an unpredictable spatial-temporal distribution. Furthermore, this distribution may change 
with the impact of climate change (Bebber et al., 2013). Therefore, knowing the pest distribution is of utmost 
importance for the correct application of control measures and management strategies (Prá et al., 2011). The 
information provided by the spatial distribution is also helpful in improving the efficiency and precision of pest 
sampling (Davis, 1994). 

Among the techniques used to study pest distribution, geostatistics stands out (Farias et al., 2008). 
Geostatistical analysis is applied to study of agroecosystems as one of the recommended precision agriculture 
techniques. At present, agroecological systems are probably the most complex. Their study generates a large 
volume of data whose analysis requires advanced statistical techniques that include aspects not considered by 
classical statistics, among others, spatial variation. The classical statistical methods consider the spatial variations 
as part of the random errors. In the design of experiments, mainly those in the field, Sir Ronald A. Fisher proposed 
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using large plots to reduce the effect of short-range spatial variation and blocks to control long-range spatial 
variation (Oliver, 2010). However, in agricultural experiments, the spatial variation of certain variables such as 
edaphic or phytosanitary, whose spatial dependence is well known, cannot always be controlled through these 
recommendations (Pringle et al., 2010). 

Geostatistics is the primary technique used to analyze experiments in a spatially explicit context (Cressie, 
1993; Pringle et al., 2010). Its use allows the control and better management of agricultural pests (Dminić et al., 
2010). It provides a valuable information to understand the determining factors of pest population dynamics 
(Liebhold et al., 1993). These dynamics are studied by comparing maps interpolated at different times to detect 
changes or persistence in spatial patterns over time (Goovaerts and Chiang, 1993). The study of fall armyworm 
(FAW) spatial distribution is essential to determine its distribution patterns and population growth rates to 
develop monitoring strategies and control the insect pest populations and therefore reduce maize yield losses 
(Hutasoit et al., 2020). 

Agriculture is also influenced by climate, soil, and water (Talchabhadel et al., 2019). In an agroecosystem, 
the main water management subsystem is soil. Soil moisture and temperature are the two most important 
variables for crop growth, development, and yield formation (Zhang et al., 2020). According to Brevik et al. 
(2016), mapping is one of the main methods for understanding these soil characteristics. Spatial information on 
these characteristics is essential for correct decision-making (Lopes and Montenegro, 2019). Soil water content 
depends on its type, climatic conditions, and water supply (Azizan et al., 2019), while its spatial distribution 
depends on the joint action of its properties, presence, type, vegetation density, and meteorological conditions 
(Famiglietti et al., 1998). Soil temperature influences several metabolic processes of plants (Al-Kayssi et al., 
1990). Its rise generally increases mineral absorption by plants and accelerates their growth (Gosselin and Trudel, 
1986). Knowing the spatial distribution of these soil characteristics is essential for decision-making to improve 
agricultural productivity and the sustainability of agroecosystems. 

In this context, the present work reports our findings on the spatial distribution of soil moisture and 
temperature and FAW incidence and severity in maize crops of a mosaic of agroecosystems predominated by 
push-pull systems established in Yautepec, Morelos, Mexico. 
 

MATERIALS AND METHODS 
 
The present study was conducted in the mosaic of agroecosystems established in the field effectiveness evaluation 
experiment conducted by Guera et al. (2021) in an area located between coordinates 18.893323N and 
99.102158W. This mosaic consists of the treatments evaluated in the experiment (Table 1): monocultures 
(negative control) and nine push-pull systems proposed by Guera et al. (2020). During the experimental period 
from June to December 2019, mean temperature was 23.61 ± 8.68 °C, and relative humidity was 
75.01 ± 23.68%. 
 

Table 1. Treatments evaluated in field effectiveness experiment conducted in Yautepec, Morelos, 
Mexico. 1Trap plants established at a distance around the main crop (maize). 2Plants intercropped in 
the main crop (maize). Source: Guera et al. (2021). 

 

Nr Treatments Components
Attractants1 Intercrops2 

1 MIIC Brachiaria hybrid ‘Mulato II’ Crotalaria juncea L.
2 MIIT Tagetes erecta L.
3 MIID Dysphania ambrosioides (L.) Mosyakin & Clemants
4 MC Panicum maximum ‘Mombasa’ C. juncea
5 MT T. erecta
6 MD D. ambrosioides
7 TC Panicum maximum ‘Tanzania’ C. juncea
8 TT T. erecta
9 TD D. ambrosioides

10 M Maize monoculture not treated with pesticides (negative control) 
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Data preparation and geostatistical analysis 
The data used are from maize (Zea mays L.) cultivation areas (10 m × 10 m) of 30 experimental plots (14 m × 
14 m) established in a randomized complete block design (RCBD) (Guera et al., 2021). All variables were 
sampled using the five-gold method in each plot. Soil temperature and moisture were measured after canopy 
closure in maize crops, 2 mo after their establishment, after a mid-summer drought of approximately 2 wk. The 
fall armyworm (FAW) (Spodoptera frugiperda (J.E. Smith), Lepidoptera: Noctuidae) incidence was measured at 
7 (FAI1), 14 (FAI2), and 21 (FAI3) d and the severity at 21 d, reviewing 10 maize plants in each point of the 
five-gold sampling system established in each experimental plot. A total of 150 points were georeferenced by 
their UTM geographic coordinates surveyed with a GPS (eTrex 10, Garmin, Kansas City, Kansas, USA). 

Geostatistical analysis is divided into three main stages: exploratory analysis, variographic analysis, and 
spatial estimation (Figure 1). In the exploratory analysis, basic statistics (measures of central tendency, 
dispersion, and shape) and graphs (histograms and boxplots) were used to describe the statistical behavior of 
variables under study. The variables whose data did not attend symmetric and mesokurtic distribution were 
subjected to transformations determined by the Box-Cox family of transformations (Box and Cox, 1964) 
(Equation 1). The presence of distributional outliers was also verified by the method adopted by Díaz-Viera et 
al. (2021): 

𝑊ሺఒሻ ൌ ቐ
𝐿𝑛ሺ𝑌ሻ,                        𝑠𝑖 𝜆 ൌ 0
𝑦ఒ െ 1

𝜆
,                      𝑠𝑖 𝜆 ് 0 

    ቑ                                                                                            ሺ1ሻ 

where, W() is the transformed variable; y is the original variable and  is the transformation coefficient that 
maximizes maximum likelihood estimator and minimizes residuals.  
 

 
 

Figure 1. Geostatistical analysis stages. 
 
 
Variographic analysis 
This stage consisted of semivariograms estimation in the directions 0°, 45º, 90º, and 135º with angular tolerance 
of ± 22.5° to verify the presence of anisotropy. The experimental semivariograms were estimated using variogram 
and cross variogram formulas proposed by Matheron (1963). The theoretical variogram models of Table 2 were 
fitted to experimental variograms (scatter points). Each model indicates a different spatial pattern. The spherical 
model is appropriate for abrupt changes, the exponential describes relatively irregular phenomena, and the 
Gaussian is adopted for regular and continuous phenomena (Teixeira et al., 2012): 
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where, 𝛾ොሺℎሻ is semivariance estimate; N(h) is the number of pairs of measured values Z(xi) and Z(xi + h) 
separated by a vector h; Z1 is the primary variable and Z2 is the secondary variable. 

 

Table 2. Theoretical variogram models. (h): Semi-variance; h: lag distance; C0: nugget effect; R: 
range (the distance at which the variogram reach the sill); C0 + C1 sill (the value where the variogram 
model reaches a plateau and stabilizes). 
 

Models Mathematical expressions 
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The best model for each variable was selected through cross-validation, the corrected Akaike information 
criterion (AICc) (Equations 4 and 5), and the Bayesian information criterion (BIC) (Equation 6). The degree of 
spatial dependence (DSD) was analyzed by the ratio between the nugget effect (C0) and the plateau (C0 + C1) and 
interpreted based on the following classification (Cambardella et al., 1994): Strong (DSD < 25%), moderate (25 
< DSD ≤ 75%) and weak (DSD > 75%): 

 

𝐴𝐼𝐶௖ ൌ 𝐴𝐼𝐶 ൅
2𝑘ሺ𝑘 ൅ 1ሻ
𝑛 െ 𝑘 െ 1

                                                                                                                         ሺ4ሻ 

𝐴𝐼𝐶 ൌ 𝑛 ln ൬
𝑆𝑆𝐸

𝑛
൰ ൅ 2𝑘                                                                                                                             ሺ5ሻ 

𝐵𝐼𝐶 ൌ 𝑛 ln ൬
𝑆𝑆𝐸

𝑛
൰ ൅ 𝑘 lnሺ𝑛ሻ                                                                                                                   ሺ6ሻ 

 
where, AIC is Akaike information criterion; k is number of parameters; n is number of observations; SSE is sum 
of squared estimate of errors.  

The leave-one-out cross-validation (LOOCV) procedure was used to evaluate the model’s performance. This 
procedure consists of estimating the value of a withdrawn observation with the rest of the observations. The 
process is repeated with each observation. The error of each estimate is the difference between its value and the 
observed one (Z - Z*) and is calculated using the expression 7. The best fit models are those with a mean absolute 
error (Equation 8), a mean squared error (Equation 9), and a root mean square error (Equation 10) closer to zero: 

 

𝜀௜ ൌ 𝑍൫𝑥௜൯ െ 𝑍∗൫𝑥௜൯                                         𝑖 ൌ 1, … , 𝑛                                                                      ሺ7ሻ 
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where, i is error associated with estimation of observation i, MAE is mean absolute error, MSE is mean squared 
error, RMSE is root mean square error, Z is observed value, Z* is estimated value and 𝑍̅ is the mean of observed 
values. 
 
Spatial estimation 
The fitted variogram models are used to interpolate all variables with the kriging method, which is a linear 
unbiased estimator. While FAW severity and soil moisture were interpolated with the cokriging method, which 
is a generalization of the kriging method for the multivariate case. Both methods use spatial autocorrelation to 
determine the coefficients of the estimator, but cokriging also considers the correlation between the variables 
(Chilès and Delfiner, 2012). With the interpolations, thematic maps were made to appreciate changes or 
persistence of spatial patterns in the distribution of FAW incidence/severity and soil temperature/moisture in the 
studied area. All analyses were performed in R 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria). 
 

RESULTS AND DISCUSSION 
 
Exploratory data analysis 
The descriptive analysis and the correlation matrix of the data referring to fall armyworm (FAW) incidence and 
severity and soil temperature and moisture in maize crops are summarized in Table 3 and Figure 2, respectively. 
As expected, a significant positive correlation was observed between FAW incidences in the first 3 wk and FAW 
severity in the third week. The FAW incidence at the third week (FAI3) was the most associated with FAW 
severity (FAS). Like the phytosanitary variables and the results of Al-Kayssi et al. (1990), a positive correlation 
was observed between soil moisture (Msoil) and temperature (Tsoil).  

The results indicate that FAI1 presents a symmetric distribution, FAI2 an approximately symmetric 
distribution, FAI3, and FAS strong positive skewness, Msoil a strong negative skewness, and Tsoil a moderate 
positive skewness. Regarding kurtosis, FAI1, FAI2, and Tsoil presented mesokurtic distributions, Msoil a 
moderately leptokurtic distribution, and FAI3 and FAS highly leptokurtic distributions (Table 3). 

Except for Tsoil and Msoil, all variables presented a high coefficient of variation (> 40%), the highest value 
being recorded in FAS. The logarithmic transformation was applied to FAI3, FAS, Msoil, and Tsoil. In the last 
two, it was necessary to remove outliers before applying the logarithmic transformation to obtain the desired 
distributions. Data ready for variographic analysis are in Figures 3 and 4. 
 
Variographic analysis 
The directional semivariograms of each variable were calculated in the directions 0°, 45°, 90°, and 135°, with an 
angular tolerance of ± 22.5°. All variograms were estimated with a lag increment of 4.208 m, resulting in 15 lags. 
The discrepancies in the ranges and sills were slight, which indicates the absence of anisotropy. So, we proceeded 
to compute experimental isotropic semivariograms and their subsequent adjustment to the theoretical models. In 
all the omnidirectional semivariograms (Figure 5), it was observed that the difference between the values of the 
variables increases as the distance increases until it reaches a relatively constant value. This result indicates that 
at least the intrinsic hypothesis is fulfilled. The error maps (Z - Z*) resulting from the leave-one-out cross-
validation (LOOCV) method are found in Figure 6. All models presented mean errors close to zero, indicating 
the absence of bias in their estimates. 
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Table 3. Results of the descriptive statistical analysis of georeferenced data. FAI1: Fall armyworm 
(FAW) incidence at 7 d; FAI2: FAW incidence at 14 d; FAI3: FAW incidence at 21 d; FAS: FAW 
severity at 21 d; Msoil: soil moisture; Tsoil: soil temperature; SD: standard deviation; CV: coefficient 
of variation. 

 

Variables FAI1 FAI2 FAI3 FAS Msoil Tsoil 
Minimum   0.000   0.000 10.000  1.250 40.000 19.440
1st quartile 10.000 20.000 20.000  5.000 72.000 24.027
Median 20.000 30.000 30.000  8.750 78.000 25.560
Mean 19.133 25.400 31.067 13.508 75.487 25.915
3rd quartile 27.500 30.000 37.500 16.250 80.750 27.082
Maximum 40.000 60.000 90.000 67.500 92.000 33.330
SD   8.969 10.273 14.662 13.201  9.440   2.611
CV 46.877 40.445 47.195 97.727 12.510 10.080
Skewness  -0.053  -0.451  1.571  1.787 -1.190   0.528
Kurtosis   2.689   3.544  6.069  6.132  4.759   3.438

 
 

 

Figure 2. Correlation matrix for all pairs of the observed variables (read from the diagonal). The lower 
part shows scatter plots and smoothing splines for each possible pair; the upper part shows the Pearson 
correlation coefficient (text size proportional to absolute value). The significance of the correlation 
coefficients at different levels is indicated by the following symbols: 0.05 (*), 0.01 (**) and 0.001 
(***). FAI1: Fall armyworm (FAW) incidence at 7 d; FAI2: FAW incidence at 14 d; FAI3: FAW 
incidence at 21 d; FAS: FAW severity at 21 d; Msoil: soil moisture; Tsoil: soil temperature. 

 
 
The experimental semivariograms indicate spatial dependence in the analyzed variables (Figure 5). The spherical 
model was better fitted to the phytosanitary variables and the Gaussian to the edaphoclimatic variables (Table 4). 
This result agrees with those of Ramírez-Dávila et al. (2002), according to which the spherical model is 
recommended to interpolate plants harmful agents, and Farias et al. (2008), for whom the most representative 
model for FAW spatial dependence was also the spherical one. The adjustment of the spherical model to 
incidence (FAI1, FAI2, and FAI3) and severity (FAS) variables indicates that FAW distribution occurs in an 
aggregate way (Gireesh et al., 2021), being possible to observe areas of higher incidence or severity. These areas 
are the points of monoculture establishments (negative control) that did not receive treatment to control the 
pest (green areas of Figures 7 and 8). 
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The soil moisture (Mohanty et al., 2000; Karamouz et al., 2021) and temperature data (Teixeira et al., 2012) 
were better fitted to the Gaussian model. This suggests that both variables present a regular and continuous spatial 
distribution (Teixeira et al., 2012). The lowest values of the selection criteria were recorded in the Gaussian 
model, which indicates a better fit of this to the experimental variograms of soil moisture and temperature (Table 
5).  

Fall armyworm incidence presented a strong spatial dependence in the first 2 wk and a moderate one in the 
third week (FAI3) (Table 4). This result agrees with Farias et al. (2008), according to which FAW spatial 
dependence decreases with the development of its population until it becomes random. In this study, this state 
was not reached because of the effects of the different management systems on the pest population. Even FAW 
severity at the third week (FAS) showed a strong spatial dependence. On the other hand, the edaphoclimatic 
variables presented a moderate spatial dependence. 
 

 

 

  
Figure 3. Spatial distribution of soil moisture and temperature and fall armyworm (FAW) incidence 
and severity in the mosaic of systems established in Yautepec, Morelos, México. FAI1: FAW 
incidence at 7 d; FAI2: FAW incidence at 14 d; FAI3: FAW incidence at 21 d; FAS: FAW severity at 
21 d; Msoil: soil moisture; Tsoil: soil temperature. 
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Table 4. Estimates of the parameters of the theoretical semivariogram models. C0: Nugget effect; C0 
+ C1: sill; R: range; DSD: degree of spatial dependence; FAI1: fall armyworm (FAW) incidence at 7 
d; FAI2: FAW incidence at 14 d; FAI3: FAW incidence at 21 d; FAS: FAW severity at 21 d; Msoil: 
soil moisture; Tsoil: soil temperature. 
 

Variables Model C0 C0 + C1 R(m) DSD (%) 

FAI1 Spherical 10 78 16 12.821 

FAI2 Spherical 10 99 16 10.101 

Ln (FAI3) Spherical   0.06   0.19 16 31.579 

Ln (FAS) Spherical   0.15   0.90 16 16.667 

Ln (Msoil) Gaussian   0.0115   0.020 25 57.500 

Ln (Tsoil) Gaussian   0.0047   0.0105 25 44.762 

 
 

 
Figure 4. Histograms and boxplots of fall armyworm (FAW) incidence (at 7, 14 and 21 d), FAW 
severity (at 21 d), soil moisture (without 18 outliers) and soil temperature (without 4 outliers) in push-
pull systems established in Morelos, Mexico. FAI1: FAW incidence at 7 d; FAI2: FAW incidence at 
14 d; FAI3: FAW incidence at 21 d; FAS: FAW severity at 21 d; Msoil: soil moisture; Tsoil: soil 
temperature. 

 
 
Spatial estimation 
Thematic maps of the spatial distribution of FAW incidence and severity and soil temperature and moisture are 
found in Figures 7, 8, and 9, respectively. Fall armyworm incidence evolution over the 3 wk is perceptible, 
reaching high levels (green areas) in the monoculture establishment points in the third week. These points also 
coincide with greater FAW severity (Figure 8).  

These results align with Hernández-Mendoza et al. (2008): FAW lower densities present an aggregated spatial 
distribution, while the higher densities have a random and uniform distribution. This trend does not occur in an 
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absolute way since studies such as those by Ríos et al. (2014) reported this aggregate distribution pattern, both 
for small and large fall armyworm larvae, both in early and advanced infestation stages. 

In this study, an evolution of FAW incidence distribution is effectively observed, going from a more 
aggregated one in the first week when the insects were beginning to colonize the area, to a less aggregated and 
more random one in the third week. The distribution does not become random because of the repellent plants of 
the push-pull systems. These plants reduced FAW migration from highly infested monocultures to push-pull 
systems, which presented lower levels of damage. Therefore, a relatively aggregated distribution is still observed 
in the third week. The estimated spatial distributions for that last week indicated that FAW incidence in push-
pull systems varied mostly between 10% and 40%, and in maize monocultures, between 35% and 90%.  
 
 

 

 
Figure 5. Variograms of incidence FAI1 (A), FAI2 (B), Ln (FAI3) (C) and severity Ln (FAS) (D) of 
fall armyworm and soil moisture Ln (Msoil) (E) and temperature Ln (Tsoil) (F). 
 
 
Table 5. Models’ selection criteria values. FAI1: Fall armyworm (FAW) incidence at 7 d; FAI2: FAW 
incidence at 14 d; FAI3: FAW incidence at 21 d; FAS: FAW severity at 21 d; Msoil: soil moisture; 
Tsoil: soil temperature; AICc: corrected Akaike information criterion; BIC: Bayesian information 
criterion; RMSE: root mean square error; MAE: mean absolute error. 
 

Variables Model AICc BIC RMSE (%) MAE 

FAI1 Spherical 119.592 100.716 28.177 0.763 

FAI2 Spherical 124.887 106.011 26.713 0.767 

Ln (FAI3) Spherical -80.023 -98.898 15.686 0.002 

Ln (FAS) Spherical -25.704 -44.579 19.756 0.044 

Ln (Msoil) Gaussian -154.099 -172.975 14.257 -0.001 

Ln (Tsoil) Gaussian -173.764 -192.640 14.535 -0.001 
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Table 6. Estimates of the parameters of the models adjusted to the cross variogram. VP: Primary 
variable; VS: secondary variable; C0: Nugget effect; C0 + C1: sill; R: range; DSD: degree of spatial 
dependence; FAI3: fall armyworm (FAW) incidence at 21 d; FAS: FAW severity at 21 d; Msoil: soil 
moisture; Tsoil: soil temperature. 
 

VP/VS Model C0 C0 + C1 R(m) DSD (%)
Ln(FAS)/Ln(FAI3) Spherical 0.0500 0.350 16 14.286 

Ln(Msoil)/Ln(Tsoil) Gaussian 0.0025 0.006 25 41.667 
 
 

The FAW damage severity ranged between 20% and 70% in monocultures and between 1% and 25% in the 
push-pull systems. These results confirm that FAW distribution in an agroecosystem depends, among other 
factors, on its agroecological conditions and the plant species that constitutes it (Hernández-Mendoza et al., 
2008).  
 
 

    

 

 
Figure 6. Distributions and histograms of the normalized errors of the fitted model. FAI1: Fall 
armyworm (FAW) incidence at 7 d; FAI2: FAW incidence at 14 d; FAI3: FAW incidence at 21 d; 
FAS: FAW severity at 21 d; Msoil: soil moisture; Tsoil: soil temperature. 
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Table 7. Models’ selection criteria values for the models fitted to the cross variogram. VP: Primary 
variable; VS: secondary variable; AICc: corrected Akaike information criterion; BIC: Bayesian 
information criterion; RMSE: root mean square error; MAE: mean absolute error; FAI3: fall 
armyworm (FAW) incidence at 21 d; FAS: FAW severity at 21 d; Msoil: soil moisture; Tsoil: soil 
temperature. 
 

VP/VS Model AICc BIC RMSE (%) MAE 

Ln(FAS)/Ln(FAI3) Spherical   -57.515   -76.391 17.883   1.057E-02 

Ln(Msoil)/Ln(Tsoil) Gaussian -180.255 -199.131 21.485 -6.495E-04 
 
 

 

 

 
Figure 7. Ordinary kriging maps for fall armyworm (FAW) incidence in the first 3 wk (estimates maps 
on the left and error maps on the right). FAI1: FAW incidence at 7 d; FAI2: FAW incidence at 14 d; 
FAI3: FAW incidence at 21 d. 
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Maps confirm that soil moisture and temperature follow a regular and uniform distribution (Figure 9). It was 
impossible to associate the observed distribution pattern with the different systems that constitute the 
agroecosystem mosaic. In part, this is because water management was not prioritized in the design of the systems 
and, on the other hand, the number of factors on which the edaphoclimatic variables depend. The main factors 
contributing to soil moisture variability at different spatial scales and timescales are soil properties, topography, 
vegetation, land management, precipitation, and temperature (Mohanty et al., 2000). 
 
Multivariate geostatistics to assess patterns of spatial dependence of FAW severity and soil moisture 
Cross variogram estimation. The FAW severity (FAS) is the most associated with maize yield, and soil 
moisture (Msoil) conservation is most associated with agroecosystems sustainability. The variables most 
correlated with these are FAW incidence at the third week (FAI3) and soil temperature (Tsoil), respectively 
(Figure 2). Therefore, the primary variables (FAS and Msoil) were modeled with the secondary variables FAI3 
and Tsoil, respectively. 

Since the co-kriging was performed with two variables, three simple variograms were necessary. A variogram 
for the primary variable, another for the secondary variable, and a cross-variogram between both variables 
(Figure 10). The matrices of the linear coregionalization models were positive semi-definite.  

Parameters estimates of the models fitted to the cross variograms are found in Table 6 and Figure 10 and 
evaluation criteria in Table 7. Except for root mean square error (RMSE), these criteria indicate a better fit of the 
Msoil variographic model, generating more accurate and less biased estimates than the FAS model. 

The error maps (Z - Z*) obtained from the LOOCV of the models are found in Figure 11. These, like the 
previous variograms, indicate mean errors close to zero (Table 7), which indicate that the fitted models generate 
unbiased estimates. 

 
 
 

 
 
Figure 8. Ordinary kriging maps for fall armyworm (FAW) severity at the third week (FAS) of maize 
crop (estimates map on the left and error map on the right). 
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Figure 9. Ordinary kriging maps for soil moisture (Msoil) and temperature (Tsoil) after vegetative 
development of maize crops (estimates maps on the left and error maps on the right). 
 
 

        
Figure 10. Fall armyworm severity (FAS) and soil moisture (Msoil) cross variograms. 
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Figure 11. Distributions and histograms of the normalized errors of the models fitted to the cross 
variograms of fall armyworm severity (FAS) and soil moisture (Msoil). 
 

 
Spatial estimation by cokriging. Maps of spatial estimates of FAS and Msoil by cokriging are presented in 
Figures 12 and 13, respectively. The interpolations by cokriging, both for FAS and Msoil, presented distribution 
patterns like those obtained by kriging. In addition, these interpolations are more accurate and less biased 
(MAEcokriging < MAEkriging) than those obtained by the kriging method, this being one of the advantages of 
cokriging, especially when the variables under study are cross-correlated (Isaaks and Srivastava, 1989). 
Geostatistical techniques allowed the analysis of FAW distribution patterns to understand its dynamics during 
the greatest vulnerability of maize crops (first 3 wk). The main limitation of this study is that it does not allow us 
to analyze the effect of each push-pull system on FAW spatiotemporal dynamics. In fact, the study did not set 
this objective because it would imply performing the geostatistical analyzes by the system, which was not 
possible due to insufficient data. Kerry and Oliver (2008), among other authors, recommend that a minimum of 
100 to 150 points be used to construct reliable variograms. The size of each agroecosystem was 196 m2 (14 m × 
14 m plots). Of this, 100 m2 (10 m × 10 m) were planted with maize except for the monoculture. It is an area 
considered small to meet the sample requirements. Therefore, the study was carried out considering the entire 
mosaic of agroecosystems. Five samples in each of the 30 agroecosystems that constitute this mosaic total the 
150 points recommended for obtaining a reliable variogram. 
 

 

 
Figure 12. Ordinary cokriging maps for fall armyworm severity (FAS) at the third week  
of maize crops. 
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Figure 13. Ordinary cokriging maps for soil moisture (Msoil) after vegetative development 
of maize crops. 

 
CONCLUSIONS 

 
The phytosanitary variables presented a strong spatial dependence and the edaphoclimatic variables a moderate 
one. Soil temperature and moisture presented a continuous and more uniform spatial distribution. Fall armyworm 
incidence and severity presented an aggregated spatial distribution, with monocultures as the main foci of 
infestation. Identifying these foci, made possible by the aggregated distribution pattern, improves the efficiency 
of pest control methods, such as mass trapping, mating disruption, and release of natural enemies, among others. 
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