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ABSTRACT

Crop rotation and straw return are important sustainable agricultural practices. However, their combined impact
on the soil microbiota is poorly understood. Here, the effects of crop rotation and straw return on rice (Oryza
sativa L.) productivity, soil properties and soil microbial community was investigated in a Chinese southern
paddy soil. There were six treatments, including rice-fallow (RF), rice-rape (Brassica campestris L.) rotation (RR),
rice-edamame (Glycine max (L.) Merr.) rotation (RE), RF with rice straw return (RFS), RR with rice and rape straw
return (RRS), and RE with rice and edamame straw return (RES). The results showed that rice yields in RR and
RE were increased by 6.28% and 6.93% relative to RF and straw return group increased by 3.03%-8.16% relative
to the group without straw return. Rotation increased soil available P (AP) and RRS significantly increased soil
organic matter (OM), total N (TN) and available K (AK) in comparison with RR. Rotation impacts soil microbial
community in a stronger way than straw return. Rotation increased the bacterial species numbers and fungal
Shannon index. Disease-suppressing bacteria were enriched and some fungal pathogen was decreased in
rotation treatments. Straw return had no potential risk in increasing the microbial pathogens. Soil fertilities like
AK and AP were closely correlated with bacterial alpha-diversity and rice yield. In conclusion, our research
demonstrated that combined crop rotation and straw return is an optimum agricultural practice in increasing
rice productivity and soil fertility. The impacts of crop rotation and straw return on the microbiota were distinct.
These findings help us manage the crops and residues in southern China.

Key words: Brassica campestris, crop rotation, Glycine max, microbial community, Oryza sativa, paddy soil,

straw return.

INTRODUCTION

According to National Bureau of Statistics in Chinese, paddy soil area approximately covered 29.45 million ha
which occupies about 25% of the Chinese agricultural field of food crops. China achieved about 0.87 billion tons
of crop straw annually (Zhang et al., 2021). Many researchers have proved that straw return can improve soil
organic matter (SOM) and nutrient supply resulting in sustainable crop yields (Latifmanesh et al., 2020; Liu et
al., 2021). Therefore, straw return has been considered as eco-friendly practice to achieve sustainable
agriculture (Dhaliwal et al., 2020).

Soil microorganisms are responsible for the soil stability (Gul et al., 2015) and they are sensitive to soil
environmental changes. Crop straw is a valuable C source for microbes. Many researchers have reported the
effects of straw on the soil microbiota. Miura et al. (2016) stated that straw return could stimulate the growth
of soil microorganisms. The application of straw distinctly influenced the bacterial community under a rice-
wheat system (Guo et al., 2016). Su et al. (2020) suggested that corn straw return had negative impact on soil
fungal community diversity.
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Except for straw return, crop rotation is another common agricultural management practice. Crop rotation
is beneficial to overcome continuous cropping obstacle which is common in monoculture (Larkin et al., 2021).
Rotation is conducive to improve soil structure (Benitez et al., 2017), increase soil microbial diversity (Woo et
al., 2022) and control plant disease (Qin et al., 2022). Paddy-upland rotation changed the environments of soil
microbiota and microbial diversity is commonly increased compared to monoculture (Borrell et al., 2017).

However, many studies mainly focused on the effect of a particular management practice on rice
productivity, soil fertility and soil microbiome, while ignoring the combined effects of crop rotation and straw
return on microbiota. Single farming practice such as crop rotation (Wang et al., 2023) and straw return (Yang
et al., 2022) can have obvious impacts on soil microbiota; however, similar responses may be changed when
these practices co-occur in an integrated system. Therefore, understanding the impacts of different agricultural
management practices on the rice productivity, soil fertility and microbial community will provide valuable
information which can facilitate the development of scientific farm management patterns for rice.

The objectives of this study were aimed to (i) investigate the effects of crop rotation and straw return on the
rice productivity and soil properties; (ii) elucidate the responses of soil microbial composition and diversities to
different management practices; (iii) establish relationships between rice yield, soil fertility, and microbial
diversities.

MATERIALS AND METHODS

Site description and experimental design

The study site is located at the Agroecological Experimental Station (26°13' N, 119°04' E) in Minhou County,
Fujian Province, southern China. It is located in the transition zone between southern subtropical and central
subtropics with a mean annual temperature of 19.5 °C and rainfall of 1350.9 mm. The soil is a yellow clayey soil
derived from diluvium. The initial soil had 1.15 g cm™ bulk density, pH 5.28, 20.66 g kg™ soil organic matter
(SOM), 0.97 g kg* total N (TN) in 0-20 cm soil layer.

There were six treatments: (1) Rice (Oryza sativa L.)-fallow without rotation and straw return (RF), (2) rice-
rape (Brassica campestris L.) rotation with no straw return (RR), (3) rice-edamame (Glycine max (L.) Merr.)
rotation with no straw return (RE), (4) RF with rice straw return (RFS), (5) RR with straw return (including rice
and rape straw) (RRS), and (6) RE with straw return (including rice and edamame straw) (RES). The experiment
field was designed by a split-plot in triplicate per treatment and every plot size was 12 m? (4 x 3 m). Therefore,
there were 18 plots in this experiment. The N, P, and K fertilizers were urea, calcium superphosphate and
potassium chloride, respectively. The annual amounts of chemical fertilizer are shown in Table 1. All the straws
were cut by 5-10 cm and applied to soil at 0-10 cm layer. Rice straw was returned to the field in November, rape
and edamame straws were returned in June. The amounts of returned straw, moisture and nutrients of all crop
straw were shown in Table 2.

Table 1. Agricultural management practices under different treatments.

NPK application Planting Harvest
Crop (kg hat) Fertilization method time time
Rice 135:54:94.5 N fertilizer: 50% as basal fertilizer, 50% as tillering fertilizer; P Late June Late
fertilizer: 100% as basal fertilizer; K fertilizer: 100% as tillering October
fertilizer
Rape 120:45:112.5 N, P, K fertilizers: 50% as basal fertilizer, 25% as seedling Early Early June
fertilizer, 25% as shooting fertilizer December
Edamame 90:72:108 N, P, K fertilizers: 50% as basal fertilizer, 50% applied at the Late March Early June

podding stage
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Table 2. The nutrients and moisture contents of crop straw. NDa: No detected, air-dried straw
of rice and rape were returned.

Amount of straw Moisture
Crop return M P K content
kg ha % % % %
Rice 3750 0.49 0.09 2.82 hos
Rape 2381 0.54 0.09 2.79 hos
Edamame 1319 0.54 0.09 2.85 92.04

Soil sampling and analysis

Soil samples were obtained in October 2019. In each replicate plot, five cores of 0-20 cm were taken and
homogenized, resulting in 18 samples (6 treatments x 3 replicates). The soil samples were divided into two parts: One
was stored at-80 °C for microbial analysis, and another sample was stored at room temperature for soil analysis. Soil
pH was determined by a pH meter (LE438, Mettler-Toledo Instruments, Shanghai, China) in a soil solution (1:2.5
soil:water). The SOM was measured by K.Cr.07 oxidation method, TN by Kjeldahl digestion, available N with the NaOH
hydrolysable method. The available P was extracted using 0.5 mol L' NaHCOs (pH 8.5) and measured by UV
spectrophotometry (UV- 2800A, UNICO, Shanghai, China), available K was extracted using 1.0 mol L'* ammonium
acetate (NH4OAC, pH 7.0) and determined by flame photometry (Cole-Parmer 2655-00 digital flame analyzer, Chicago,
lllinois, USA). All soil properties analysis were followed by the method in Lu (2000).

DNA extraction and sequencing

Soil DNA was extracted with the PowerSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad, California, USA).
The concentration of DNA was determined by a Nanodrop 2000 spectrophotometer (NanoDrop Technologies
Inc., Wilmington, Delaware, USA). The bacterial V3/V4 regions of 16S rRNA was amplified with the primers 338F
(5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5'-GGACTACHVGGGTWTCTAAT-3’), and fungal ITS1 region was
amplified by the specific primers [ITS1IF (5-CTTGGTCATTTAGAGGAAGTAA-3) and ITS2 (5'-
GCTGCGTTCTTCATCGATGC-3). High-throughput sequencing was implemented on an Illumina MiSeq PE300
platform (Illumina, San Diego, California, USA) at Majorbio Bio-Pharm Technology (Shanghai, China). The raw
sequences were submitted in National Center for Biotechnology Information (NCBI, Bethesda, Maryland, USA)
Sequence Read Archive database (accession nr: PRINA848429, PRINA922620).

Bioinformatic analyses

Raw reads were filtered with QIIME2 (Quantitative Insights Into Microbial Ecology; https://qiime2.org) pipeline.
Sequences (> 97% similarity) were clustered into one operational taxonomic unit (OTU) with UPARSE (Edgar,
2010). The OTUs of the bacteria and fungi were classified through the Silva 138 database (https://www.arb-
silva.de/documentation/release-138.1/) and Unite 9.0 taxonomic database (https://unite.ut.ee/), respectively.
Alpha diversity indexes were calculated in Mothur (version 1.30.1). We used R package (R Foundation for
Statistical Computing, Vienna, Austria; https://www.R-project.org/) “stats” for the comparisons of two groups
to screen for differential microorganisms. The functional structures of bacterial and fungal communities were
obtained from PICRUSt1 and FUNGuild.

Statistical analysis

One-way and two-way ANOVA of soil characteristics and microbial diversities were performed with SPSS (SPSS
Statistics for Windows, V26.0, IBM, Armonk, New York, USA) by Duncan’s test. Pearson’s correlation coefficients
of rice yield, soil factors and microbial diversities were also analyzed by SPSS. The non-metric multidimensional
scaling (NMDS) and PERMANOVA based on the Bray-Curtis distances were performed to analyze the impacts of
crop rotation and straw return on bacterial and fungal communities using the “vegan” package in R.
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RESULTS

Rice yield and soil physicochemical properties

In order to avoid the effect of annual climate and management variations on the rice yields, the average rice
yields from 2016 to 2019 were calculated. As shown in Table 3, RF treatment had the lowest rice yield with
7692.88 kg ha, and crop rotation significantly increased the rice yields (P < 0.05). The RR and RE treatments
had 8175.84 and 8226.10 kg ha™ rice yields, respectively. However, no obvious difference in the rice yield
between RR and RE was observed. Notably, rice yields in the straw return were obviously increased in
comparison with the corresponding treatments without straw return with the range from 3.03% to 8.16%. Two-
way ANOVA demonstrated that crop rotation (P < 0.01) or straw return (P < 0.001) alone had strong impacts on
the rice yields, but the combined impact of crop rotation and straw return was not observed.

Table 3. Soil properties and rice yield in different rotation systems with/without straw return.
The soils were collected in 2019. SOM: Soil organic matter; TN: total N; AN: available N; AP:
available P; AK: available K; RF: rice-fallow; RR: rice-rape rotation; RE: rice-edamame rotation;
RFS: RF with straw return; RRS: RR with straw return; RES: RE with straw return. Values are
means (x SD). Different lowercases in a column indicate significant differences among
treatments (P < 0.05). "P < 0.05, P < 0.01 and ""*P < 0.001, "™nonsignificant.

Treatment SOM N AN AP AK pH Yield
gk’ gk’ mg kg* mg kg’ mg kg’ kg ha*

RF 2420t113°  1061008° 93511358°  10.510.98° 188:19° 5001005  7692.88£279.36°
RR 2407125 105$009° 1046+9.11*°  144£3.27 344198 5021013 8175.84 +98.86°
RE 2334£015°  102:00%° 896:1112° 141:120° 300£69° 5041008  8226.10£13525%
RFS 25.62 +0.38° 1.13+0.03"% 97.1+3.66° 12.0+1.12% 388419 5041009 8320.29%102.57*
RRS 28354144 128£003° 1215£1167° 13.83:l166® TL7£149 50110168  8514.72152381°
RES 24,35+2,01° 1.0640.13° 93.24118% 140+1.75% 37.7499" 5074007 847549 £59,91%
Two-way ANOVA
Ratation (R} ’ b B ’ b =
Straw (3) - ’ " " h "

The soil properties in 2019 are shown in Table 3. Compared to RF, RR treatment increased the contents of
soil AN and AP. After straw return, only rice-rape rotation (RR treatment) improved SOM, TN, AN, and AK in
comparison with the treatment without straw return demonstrating that rice-rape system was better than rice-
edamame system in improving the soil fertilities. It was worth noting that soil AK content in RRS treatment was
almost two times than those of other treatments. However, the pH variations among all treatments were not
observed.

Microbial community diversity affected by crop rotation and straw return

After filtering raw data with low quality, a total of 865402 and 1269351 valid 16S rRNA and ITS sequences were
achieved and the average lengths were 414 and 233 bp, respectively. The sequence numbers of 16S rRNA and
ITS were 40898-55 263, and 56 573 to 86 603 for each sample, respectively. The OTU numbers of bacteria and
fungi were 5475 and 2063, respectively.

The sequences coverage of 18 samples reached over 97.14%, suggesting that the sequence depth is
sufficient to meet the analysis requirement. As shown in Table 4, RR treatment observed the highest Chaol
(3879) and ACE indices (3852), suggesting that rice-rape rotation could increase the bacterial community
richness relative to RF (Table 4). Two-way ANOVA showed that crop rotation rather than straw return had
significant impact on the Chaol and ACE indices (P < 0.05) of bacteria (Table 4).
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Table 4. Soil bacterial alpha diversity indices. RF: Rice-fallow; RR: rice-rape rotation; RE: rice-
edamame rotation; RFS: RF with straw return; RRS: RR with straw return; RES: RE with straw
return. *P < 0.05; ™nonsignificant.

Treatment Chao 1 ACE Shannon Coverage

RF 3675 + 53° 3708 + 46° 6.55 + 0.032 0.9727 + 0.0003?
RR 3879 + 140%° 3852 +98°%° 6.65+0.132 0.9715 + 0.0009°
RE 3754 + 473 3801 + 26°° 6.62 +0.01° 0.9724 + 0.0005*
RFs 3710 + 109%° 3743 £ 78%° 6.53 £ 0.15° 0.9723 + 0.0006*
RRS 3909 + 156 3885 + 1312 6.65 + 0.042 0.9711 £ 0.0014%
RES 3841 £ 51 3837 + 64°° 6.62 + 0.052 0.9714 + 0.0009°
Two-way ANOVA

Rotation (R) " } ns

Straw return (S) ne ne ns

R ® S ns ns ns

The responses of fungal richness and diversity were significantly different from those of bacteria. Rotation
practice had no distinct influence on the fungal Chaol and ACE indices compared with RF. After straw return, RRS
treatment was beneficial to increase the fungal species in comparison with RR. Fungal Shannon indices were
generally increased in the rotation treatments relative to RF by 22.46%, and 26.67%, respectively (Table 5). After
straw return, RES treatment decreased the Shannon index in comparison with RE by 20.22%. Two-way ANOVA
demonstrated that rotation practice alone exerted distinct impacts on the fungal Shannon index (P < 0.05).

Table 5. Soil fungal alpha diversity indices. RF: Rice-fallow; RR: rice-rape rotation; RE: rice-
edamame rotation; RFS: RF with straw return; RRS: RR with straw return; RES: RE with straw
return. "P < 0.05; "™nonsignificant.

Treatment Chaol ACE Shannon Coverage
RF 603 + 6%* 600 + 12%¢ 2.85+0.13%® 0.9933 £ 0.0003°
RR 544 + 9° 521+82° 349 +£0.12¢ 0.9953 £ 0.0003°
RE 559 + 25 550 + 28%° 3.61+0.25% 0.9986 £ 0.0002°
RFS 556 + 36%° 556 + 30%° 2.70+£0.10° 0.9983 £ 0.0004#
RRS 664 + 142 656+ 15 3.60+0.17¢ 0.9931 + 0.000%%
RES 584 + g53° 582 £ 70 2.88+0.62%° 0.9978 £ 0.000%%
Two-way ANOVA
Rotation (R} ns n:
Straw return (S) ns n: n:
R w0 S ns ns ns

Microbial community affected by crop rotation and straw return

The predominant bacterial phyla were largely consistent but little variations in the relative abundances were
observed. The dominant phyla (> 1%) include Proteobacteria, Chloroflexi, Actinobacteriota, Acidobacteriota,
Firmicutes, Planctomycetota, Desulfobacterota, Myxococcota, Bacteroidota, Nitrospirota, Verrucomicrobiota
and Gemmatimonadota across the different treatments (Figure 1A). Firmicutes and Gemmatimonadota were
enriched in RE treatment relative to RF, but Nitrospinota abundance was significantly decreased (P < 0.01)
(Figure 2A). After straw return, RFS treatment significantly decreased Nitrospinota abundance relative to RF
(Figure 2B). However, no differential bacterial taxa were observed between RF and RR, RR and RRS, RE and RES
treatments. The bacterial dominant genera were also similar across all soil samples (Figure 3A). Differential
bacterial genera between RF and rotation practices were also observed, e.g., Reyranella and Desulfatiglans were
decreased, but Occallatibacter and Actinoallomurus were enriched in RR treatment. Bacillus, Paenibacillus,
Alicyclobacillus, Microbispora, Nitrospira, and Ammoniphilus were significantly enriched in RE treatment
(Figures 4A, 4B). After straw return, some bacterial genera were significantly decreased in the treatments with
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straw. The abundances of Phaselicystis, Chthonomonas, Luteitalea were significantly decreased in the RF system
(Figure 5A). The abundances of Sporomusa and Pelotomaculum were decreased but Geobacter and
Desulfovibrio were increased in the rice-rape system (Figure 5B). In rice-edamame system, Conexibacter, Delftia,
Aquicella, Desulfosporosinus and Sporobacter were significantly decreased and Rhizomicrobium were enriched
after straw return (Figure 5C).
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Figure 1. Community composition of soil microorganisms at the phylum level: Bacteria (A), fungi (B). RF:
Rice-fallow; RR: rice-rape rotation; RE: rice-edamame rotation; RFS: RF with straw return; RRS: RR with
straw return; RES: RE with straw return.
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Figure 2. Differential bacterial taxa at the phylum level under different management practices: Rice-fallow
(RF)/rice-edamame rotation (RE) (A), RF/RF with rice straw return (RFS) (B). P < 0.05, P < 0.01.
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straw return; RRS: RR with straw return; RES: RE with straw return. "P <0.05, “*P < 0.01.
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For fungal community, the predominant phyla were classified as Mortierellomycota, Ascomycota,
Basidiomycota with 26.04% to 59.35%, 26.21% to 51.20% and 7.92% to 18.81% across all samples, respectively
(Figure 1B). Crop rotation and straw return resulted in some differential fungal phyla. Compared with RF, RR
treatment decreased Basidiomycota and Kickxellomycota abundance at 5% significance level (Figure 6A). The
RE treatment decreased Mortierellomycota abundance (P < 0.05) but enriched Rozellomycota relative to RF (P
< 0.01) (Figure 6B). After straw return, RFS significantly increased the abundance of Zoopagomycota relative to
RF (P < 0.01) (Figure 6C). In comparison with RE, RES treatment decreased Chytridiomycota abundance (P <
0.05) (Figure 6D). Mortierella was the most abundant genus, and its abundances had big variations across all
samples (Figure 3B). The abundance of Mortierella was decreased in RR and RE relative to RF. In comparison
with RF, RR treatment decreased the abundances of Paraphaeosphaeria, Rhizophydium and Lycoperdon (Figure
7A). And for RE treatment, the abundances of Paraphaeosphaeria and Collarina were significantly decreased
but Thielavia, Phialocephala, Phialosimplex were increased (Figure 7B).
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Figure 6. A-B: Differential fungal taxa at the phylum level between rice-fallow (RF) and rotation treatments.
C-D: Differential fungal taxa between treatments with and without straw return. RR: Rice-rape rotation;
RE: rice-edamame rotation; RFS: RF with rice straw return; RRS: RR with straw return; RES: RE with straw
return. “P < 0.05, "P < 0.01.
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After straw return, the differential fungal taxa between the group with and without straw return were
analyzed, e.g. Trichoderma was enriched in RFS relative to RF (Figure 8A), and RRS significantly decreased the
abundance of fungal pathogen Fusarium relative to RR (P < 0.05) (Figure 8B). Moreover, genus Chaetomium was
enriched in RES treatment in comparison with RE (Figure 8C).
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Figure 7. Two groups of fungal comparison based at the genus level between rice-fallow (RF) and rotation
practices. RR: rice-rape rotation; RE: rice-edamame rotation. *P < 0.05, P < 0.01.

Non-metric multidimensional scaling (NMDS) of soil colonies

In Figure 9A, subsamples points of RR treatment had the farthest distance from RF and RE, which demonstrated
that there was obvious separation in the soil bacterial community between RR and RF, RE. For fungal community,
there was no overlap among RF, RR and RE, suggesting that the rotation type had a distinct effect on the fungal
community (Figure 9B). Bacterial and fungal communities between the groups with and without straw return
in the same rotation system were also evaluated (Figures 10A-10F). The non-metric multidimensional scaling
(NMDS) ordinations revealed that the application of straw had no evident impact on the soil microbiota. Above
results demonstrated that crop rotation rather than straw return had obvious influence on the soil microbiota.
Furthermore, the PERMANOVA test also yielded the same results (Table 6). Crop rotation practice exerted a
significant effect on the bacterial (r2 =0.3398, P <0.05) and fungal (r2 =0.3614, P < 0.05) community structures.

However, the dispersion of triplicate samples decreased the influence of crop rotation on the microbiota.
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Figure 8. Two groups of fungal comparison based at the genus level between treatments with and
without straw return. RF: Rice-fallow; RR: rice-rape rotation; RE: rice-edamame rotation; RFS: RF
with straw return; RRS: RR with straw return; RES: RE with straw return. *P < 0.05, **P < 0.01,
**xp <0.001.
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Figure 10. Ordination plots showing the influence of straw return on bacterial (A-C) and fungal (D-F)
community structures in the same rotation mode. Non-metric multidimensional scaling (NMDS) plots
based on Bray-Curtis dissimilarities were calculated at the operational taxonomic unit (OTU) level. RF:
Rice-fallow; RR: rice-rape rotation; RE: rice-edamame rotation; RFS: RF with straw return; RRS: RR with

straw return; RES: RE with straw return.
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Table 6. The PERMANOVA for the effects of crop rotation and straw return on soil bacteria
and fungi. *P < 0.05. RF: Rice-fallow; RFS: RF with rice straw return; RR: rice-rape rotation;
RRS: RR with rice and rape straw return; RE: rice-edamame rotation; RES: RE with rice and
edamame straw return.

Characteristics Community r P-value
Crop rotation Bacteria 0.3398 0.034:
Fungi 0.3614 0.045
RF/RFS Bacteria 0.1854 0.7
Fungi 0.1422 0.6
RR/RRS Bacteria 0.1623 0.9
Fungi 0.2219 0.2
RE/RES Bacteria 0.2233 0.4
Fungi 0.4000 0.1

Microbial community functions affected by crop rotation and straw return

Amino acid transport and metabolism was the abundant function for bacteria, followed by energy
production and conversion, and signal transduction mechanisms (Figure 11A). No noticeable alterations in
the relative abundances of functions were observed across all soil samples (Figure 11B).

The FUNGuild database showed that endophyte-litter saprotroph-soil saprotroph-undefined
saprotroph was the predominant fungal ecological functional (Figure 11C). Crop rotation and straw return
both exerted influences on the relative abundances of fungal functional groups. Crop rotation practice
decreased the relative abundance of endophyte-litter saprotroph-soil saprotroph-undefined saprotroph.
The RE treatment (6.22%) significantly increased the abundance of animal pathogen-endophyte-lichen
parasite-plant pathogen-soil saprotroph-wood saprotroph relative to RF (4.42%); however, RR decreased
its abundance (3.87%). These results demonstrated that rice rotation with edamame may have the
potential to increase the animal and plant pathogen but rotation with rape can be decreased the pathogen.
After straw return, the relative abundance of animal pathogen-endophyte-lichen parasite-plant pathogen-
soil saprotroph-wood saprotroph was decreased in RFS (3.40%), RRS (2.25%) and RES (4.01%) relative to
RF (4.42%), RR (3.87%), and RE (6.22%), respectively. This indicated that straw return did not increase the
risk of the transmission of pathogen from crop straw to the paddy field.

Correlations between rice yield, soil properties and microbial diversities

Soil AK content was significantly positively correlated with microbial Chaol, ACE indices and rice yields
(Table 7 and 8). Moreover, soil AP was significantly positively correlated with bacterial Chaol, ACE,
Shannon indices and rice yields (Table 7). But for fungal community, soil AP was only significantly positively
correlated with Shannon index and rice yields (Table 8).
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Figure 11. The microbial functional prediction: Clusters of Orthologous Groups (COG) functional
classification box diagram (A), functional histogram of soil bacteria (B), fungal functional prediction (C).
RF: Rice-fallow; RR: rice-rape rotation; RE: rice-edamame rotation; RFS: RF with straw return; RRS: RR with
straw return; RES: RE with straw return.
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Table 7. Correlations of soil properties, rice yield and bacterial diversities. *P <0.05, **P < 0.01.
OM: Organic matter; TN: total N; AN: available N; AP: available P; AK: available K.

R? Chaol ACE Shannon Yield
oM 0.484° 0.450 0.264 0.436
™ 0.523° 0.511° 0.247 0.425
AN 0,495 0.517° 0.267 0.405
AP 0.692° 0.639™ 0.548° 0.480°
AK 0.646"" 0.6547" 0.301 0.5357
pH -0.357 -0.358 0.140 -0.219
Yield 0.485° 0.516° 0.337

Table 8. Correlations of soil properties, rice yield and fungal diversities. *P < 0.05. OM:
Organic matter; TN: total N; AN: available N; AP: available P; AK: available K.

R* Chaol ACE Shannan Yield
amM 0.6307 0.650° 0.186 0.436
TN 0.6257 0.638° 0.246 0.425
AN 0.500 0.546 0.531 0.405
AP -0.267 -0.202 0.586" 0.480°
AK 0.6417 0.665" 0.342 0.5357
pH -0.384 -0.388 -0.353 -0.21%5
Yield 0.081 0.079 0.240

DISCUSSION

Rice yield and soil properties in different treatments

Our 4-yr field experiment indicated that rice rotation with green manure, e.g., rape and edamame could
significantly increase the rice yield (Table 3). Growing green manure crops in the fallow season in rice production
have been documented as beneficial for improving rice productivity (Zhou et al., 2016). Enhancing biodiversity
(like crop rotation) may improve C sequestration and soil fertility (Ditzler et al., 2021). Zheng et al. (2016)
presented that paddy-upland rotation can facilitate the soil C cycle and the decomposition of SOM resulting in
improved soil fertility. In our study, crop rotation improved soil AP content (Table 3). Furthermore, RR system
had the best performance in improving soil available nutrients. Incorporation of the green manure into the soils
can fix N2, activate soil nutrients to achieve high soil available nutrient (Mbuthia et al., 2015). Previous reports
suggest that rape can improve soil fertility, reduce fertilizer application and maintain high rice yield in rice
cropping systems (Huang et al., 2017).

Moreover, straw return also increased the rice yield in different rotation system relative to the treatment
without straw return by 8.16% (RF), 4.14% (RR), and 3.03% (RE), respectively (Table 3). The remarkable result is
the highest rice yield found in the combined rotation crop and straw return, which was verified by Yang et al.
(2019) who reported the highest rice yield was observed when returning combined leguminous and gramineous
residues to the field. In our study, RRS treatment benefits the improvement of soil OM, TN, AN and AK compared
with RR (Table 3). Straw returning contributes to improve the SOC pool and nutrient supply (Liu et al., 2014).
The nutrients immobilized by straw would be released across the crop growing season and then improve the
nutrients uptake for the crop. Soil AK in RRS treatment was almost two times relative to RR. According to the
Chinese second National Soil Census, soil AK content in RRS treatment was belonged to the level four (50-
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100 mg kg!), however, other treatments were belonged to the level five (30-50 mg kg'). Li et al. (2016) showed
that rape straw returning to the paddy field can not only replace partial K, but also improve soil available K.
Compared with the single rotation mode, combined crop rotation and straw return had obvious advantages
in improving the rice yield and soil fertility indicating that combined management practice is favorable in
southern paddy field and RRS is the optimum planting mode with the highest rice yield and soil fertility.

Microbial diversity in different treatments

Soil organic C sources mainly consisted of root exudates and crop residues impact the soil microbiota. Our
results demonstrated that crop rotation changed the soil bacterial and fungal diversity. Notably, crop rotation
increased bacterial community diversity (Chaol, ACE) and RR had the most bacterial species (Table 4). The
responses of fungal community diversity were apparently different to bacteria, crop rotation increased the
fungal Shannon indices (Table 5). But Xi et al. (2021) reported that cotton/maize rotation increased the bacterial
diversity and decreased fungal ones.

In our study, there were no apparent variations in bacterial diversity after the application of straw regardless
of rotation type (Table 4). For fungal community, RRS increased the fungal species in comparison with RR.
Meanwhile, fungal Shannon in RES was lower than that of RE (Table 5). Above results demonstrated that straw
returning to the field had a stronger impact on soil fungal diversity than bacteria. In the process of straw
decomposition, bacteria predominate in the early stage because they can grow rapidly on the available
compounds of the fresh plant residue (Paterson et al., 2008). Fungi can degrade more recalcitrant substances
dominating in the later stages (Marschner et al., 2011). In our study, our soil samples were collected several
months after straw returning into the field when only recalcitrant substances were present. Therefore, the soil
fungi should be more sensitive to straw return than the bacteria.

Microbial communities in different treatments

The top major bacterial phyla were Proteobacteria, Chloroflexi, Actinobacteriota, and Acidobacteriota which
were also detected in previous studies (Xia et al., 2019). However, some differences were observed in soil
subject to different crop rotation systems, e.g. RE increased Firmicutes and Gemmatimonadota abundances
(Figure 2A). Different C sources from the crop will develop the specific microbiota in the rhizosphere soil
(Edwards et al., 2015) and it will also impact the microbiota in the bulk soil. Rotation practices increased the
relative abundances of Actinoallomurus, Bacillus, Paenibacillus, and Microbispora relative to RF (Figure 4A, B).
Genera Bacillus and Paenibacillus have the capability to control plant disease (Olishevska et al., 2019).
Microbispora was considered as biocontrol tool against fungal pathogens (Das et al., 2021). Pozzi et al. (2011)
reported that the strains of Actinoallomurus could produce antibiotics suggesting Actinoallomurus is a good
source of novel antibiotics. These beneficial microbes enriched in the rotation system can improve the disease-
suppressing ability of the crop which maybe contributed to improve the rice yield. Meanwhile, genus Nitrospira
which is involved in the N cycle was enriched in the RE treatment in comparison with RF (Figure 4B).

After straw return, some distinct bacterial genera were observed in different rotation system. The RFS
significantly decreased the abundance of pathogen Phaselicystis (Figure 5A) suggesting that the practice of
straw return in the rice-fallow system is beneficial. Masuda et al. (2017) reported that genus Geobacter is the
predominant driver of N-fixing in the paddy field. The RRS increased the abundance of Geobacter in comparison
with RR (Figure 5B). Higher abundance of Geobacter may be beneficial to increase the N content in the RRS
treatment in comparison with RR (Table 3).

For fungi, Mortierellomycota, Ascomycota and Basidiomycota were the dominant phyla (Figure 1B). Fungal
functions are classified as saprotroph, pathotroph and symbiotroph. Saprophytic fungi can convert complex
organic substances into simple components, which are closely related to soil C sequestration (Sun et al., 2016).
Soil saprotrophic fungal community is mainly composed of Ascomycota and Basidiomycota which play important
roles in decompose organic matter. After straw return, RFS and RRS increased the total abundances of
Ascomycota and Basidiomycota (Figure 1B). The pathogenic fungi, Paraphaeosphaeria was obviously decreased
in the rotation group compared to RF (Figures 7A, 7B). Genus Phialocephala was obviously increased in RE
treatment (Figure 7B). Hu (2019) reported that some species of Phialocephala had the capability of dissolving
P, and higher AP content in the RE treatment than that of RF was also observed (Table 3).
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After straw return, RFS significantly increased the relative abundance of Trichoderma (Figure 8A).
Trichoderma are widely known biostimulants which can boost the crop yield and health (Lépez-Bucio et al.,
2015). Meanwhile, RFS could decrease the pathogen Aspergillus. In the rice-rape system, RRS significantly
decreased the abundance of pathogen Fusarium relative to RR (Figure 8B). Fusarium spp. are important plant
pathogens (Munkvold, 2017). Above results demonstrated that straw return could increase the beneficial fungi
but inhibit the detrimental ones. Meanwhile, RES increased the abundance of genus Chaetomium (Figure 8C).
Members of the genus Chaetomium can decompose cellulose and yield diverse bioactive metabolites (Wang et
al., 2016). Our results suggest that crop rotation had distinct impact on the soil microbiota and fungi was more
sensitive to crop rotation (Figure 9). This result is consistent with the finding by Cassman et al. (2016), who
reported that fungal community are closely associated with plant in long-term fertilized grassland. Overall, crop
rotation was the main factor in shaping soil microbiota, while straw return with less impact.

CONCLUSIONS

This study determined the responses of soil properties and microbiota to the crop rotation and rice straw return.
Combined crop rotation and straw return had huge advantages in increasing the rice yield and soil fertilities in
southern China and rice-rape rotation with rice and rape straw return is considered as the best agricultural
management practice with the highest rice yield and soil fertilities. The impacts of rotation and straw return on
the bacterial and fungal communities were distinct. Crop rotation plays a key role in shaping the soil microbiota.
Moreover, fungi were more sensitive to crop rotation than bacteria. Crop rotation increased bacterial Chao 1
and ACE indices and fungal Shannon index. Soil available P and available K were highly related with the microbial
diversities and rice yield. Both crop rotation and straw return could increase beneficial microorganisms but
decrease the soil pathogens. Incorporation of crop rotation and straw is essential to maintain sustainable
agricultural developments.
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