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ABSTRACT 
 
Identifying blueberry (Vaccinium corymbosum L.) phenotypes is an important task that can help develop novel 
cultivars better suited for changing climates and marketing requirements. The presence of traits such as a wax 
bloom that covers the blueberry fruit is essential since it protects the fruit from decay and fungal infection and 
extends shelf-life, which is especially important for the export market. Phenotyping complex traits such as 
bloom is usually done manually and, therefore, is costly. We present a shallow deep-learning model for 
automatically detecting wax bloom in blueberries by training the model using distillation knowledge, where its 
loss was computed using the L2 distance between two density functions, representing the student and the 
teacher. Each density function was modeled using Gaussian Mixtures. We made the comparisons using the 
following machine learning methods: Support vector Machine (SVM), Random Forest (RF), AdaBoost, and 
Multilayer Perceptron (MLP). Also, we evaluated Convolutional Neural Networks (CNN) architectures using a 
tradeoff between classification accuracy and model size. With only 690 parameters, the proposed model 
achieved an accuracy of 98% and represents a promising model, since it is very close to the best accuracy 
achieved (99.2%) when using larger models like the VGG16 with more than 134 million parameters. A novel 
data set of blueberries with and without wax bloom was created as an additional contribution and will be 
available for research use upon request. 
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INTRODUCTION 
 
Blueberries (Vaccinium corymbosum L.) are native to North America and were domesticated in the USA in the 
early 20th Century. Since then, its cultivation expanded all over the USA and, from there, to the rest of the world. 
This species is increasingly popular globally mainly due to the increasing scientific evidence that blueberry 
consumption by humans has a variety of health benefits. Blueberries are rich in bioactive compounds, mainly 
flavones and other polyphenolic compounds like anthocyanins, that are a major part of the total phenolic 
content of the fruit (Yang et al., 2022). Bioactive compounds can act as antioxidants, as cardiovascular 
protectants, as neuroprotectors, to improve vision, as an antidiabetic or antiobesity agent, anticancer agent, 
anti-inflammatories and antimicrobials (Yang et al., 2022; Stull et al., 2024). 

Anthocyanins are mainly stored in the vacuole of plant cells, particularly in the epidermal layers, of flowers, 
fruits and leaves (Grotewold, 2006). These surface layers allow the pigments to contribute to the visible color 
of the plant and protect it from external factors, such as ultraviolet rays (Gould, 2004). 

Blueberry fruits are not only rich in anthocyanins in their epidermis but also have a waxy layer over the 
pericarp of the fruit that provides an attractive visual appearance to consumers and acts as an effective 
protective barrier for diverse external environmental factors, like high temperatures (Lewandowska et al., 
2020). Additionally, recent information indicates that, in the case of blueberries, the blue color of the fruit is 
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not due to the presence of anthocyanins, as previously thought, and instead is the result of light reflection 
caused by the waxy layer (Middleton et al., 2024). 

Two important properties of this waxy layer, or “bloom”, are that in most fruits it prolongs the shelf-life of 
harvested fruit by retarding fruit softening, reducing water loss, prevent microbial infections, and preserving 
nutritional content (Lara et al., 2014). Also, consumers consider the bloom as an indicator of freshness, so fruit 
with a bloom are preferred. 

In the case of blueberries, Chu et al. (2018) studied the effects of wax bloom removal on post-harvest 
blueberry quality. They found that natural bloom removal not only accelerated water loss and decay but also 
reduced sensory and nutritional qualities. Additionally, a lack of bloom decreased shelf-life, antioxidant 
concentration, and accelerated the accumulation of reactive oxygen species causing lipid peroxidation and the 
disruption of organellar membrane structure in fruit with low wax bloom presence. 

The blueberry wax bloom is normally partially removed during harvest as they are typically hand-picked. 
After picking, fruits are subject to intensive manipulation during fruit selection and packing (Moggia et al., 
2016). Therefore, when exporting fruit to distant markets, which is the case of the fruit produced in the 
Southern Hemisphere and exported to the Northern Hemisphere, failure to retain bloom during harvest, 
selection, packing, transport and commercialization of the fruit, can either mean a reduction in price or, even 
worse, a partial or total loss of the fruit upon arrival. 

In addition, blueberries vary in the type and amount of bloom they develop prior to harvest; therefore, 
bloom amount is a characteristic that is selected for when breeding blueberries for high quality fruit. Up to 
now, no rapid qualitative method is available to objectively select for bloom quality, and selection is made 
exclusively based on the breeders’ personal criteria.  

An alternative to solve this problem may be the use of computer vision techniques, in particular, deep 
learning, a technique that has been used successfully to provide automatic analysis for solving real-time 
problems from images. Tasks such as image classification, object detection, segmentation, and data generation 
(Krizhevsky et al., 2012; Goodfellow et al., 2014; Chen et al., 2018) have improved over the last two decades 
thanks to the development of machine learning and deep learning techniques (LeCun et al., 2015). The use of 
such algorithms has been reported for a wide range of agricultural applications such as yield detection, fruit 
classification (Hossain et al., 2019), fruit maturity estimation (Castro et al., 2019), fruit counting (Gonzalez et 
al., 2019), disease diagnosis (Ahmad et al., 2023), and automated phenotyping (Altalak et al., 2022). 

In phenotyping applications, the challenge is to characterize fruits and plants in a reliable, automatic and 
multifunctional fashion (Yang et al., 2020). The use of computer vision techniques to extract useful information 
from images and videos has become a key process for identifying phenotypes in plants (Tausen et al., 2020). 

Quiroz and Alférez (2020), for instance, explored the use of deep learning for image recognition of ‘Legacy’ 
blueberries at the rooting stage. They trained a Convolutional Neural Network (CNN) to detect the presence of 
trays with living blueberry plants, the presence of trays without living plants, and the absence of trays. They 
reported the following results (metrics): Accuracy 86%, precision 86%, recall 88%, and F1 score 86%. 

Blueberry segmentation for counting purposes have also been reported. Gonzalez et al. (2019) used high-
definition images captured using a mobile device to detect and segment blueberries in the wild. A network 
based on Mask R-CNN for object detection and instance segmentation was proposed with the implementation 
of several backbones such as: ResNet101, ResNet50, and MobileNetV1. The best detection result was obtained 
with the ResNet50 backbone achieving a mIoU score of 0.595 and mAP scores of 0.759 and 0.724 respectively, 
for IoU thresholds 0.5 and 0.7. The best segmentation results obtained, on the other hand, were 0.726 for the 
mIoU metric and 0.909 and 0.774 for the mAP metric using thresholds of 0.5 and 0.7 respectively.  

Recent work also using image segmentation techniques was reported by Ni et al. (2022), with the main goal 
of developing a data processing pipeline to count berries, to measure maturity, and to evaluate fruit cluster 
compactness automatically in ‘Emerald’, ‘Farthing’, ‘Meadowlark’, and ‘Star’ Southern Highbush blueberry 
cultivars. They also used a Mask R-CNN model to detect and segment individual blueberries. The mean average 
precision for the validation and test dataset was 78.3% and 71.6% under 0.5 intersection over union (IOU) 
threshold, and the corresponding mask accuracy was 90.6% and 90.4%, respectively. 

Multispectral images have also been used in blueberry analysis such as for the estimation of water stress 
(Chan et al., 2021), bruise detection/quality assessment (Fan et al., 2018) and cultivar classification, among 
others. Zhang et al. (2020), for instance, proposed a method based on Fully Convolutional Networks (FCN) to 
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accurately detect internal bruising in blueberries after mechanical damage. A near-infrared hyperspectral 
imaging system was used to acquire transmittance images of 1200 blueberries. Three classes were used: 
Bruised tissue, unbruised tissue, and the calyx end of blueberries. They found that images of blueberry bruises 
and calyx ends can be segmented from undamaged blueberries as early as 30 min after mechanical damage 
has been inflicted with an accuracy of 81.2%. 

Fruit characteristics are important phenotypic traits associated with the harvestability and yield of distinct 
blueberry genotypes and can be used to monitor berry development and improve crop management. Certain 
characteristics such as wax bloom content is responsible for the visible quality of blueberries. Loypimai et al. 
(2017) studied the relation between wax bloom content and post-harvest weight loss. They designed an 
experiment where natural blueberries were compared to polished blueberries (rubbed by hand to eliminate 
wax bloom) 9 d after harvest. They demonstrated that weight loss was larger in polished than unpolished 
berries.  

Arellano et al. (2025) recently proposed a method for blueberry bloom content estimation from images. 
They focused on a Bayesian CNN that included a statistical module to detect potential misclassification. The 
final accuracy obtained after applying that module was 96.98% with an architecture of only 1502 parameters, 
which is much smaller (and therefore computationally inexpensive) than many architectures previously used.  

Therefore, the research goal of this work is to design a mobile-enabled method (the smallest architecture 
possible) to characterize bloom in blueberry fruits to help breeders make objective selection of high-quality 
fruits and to help exporters to objectively select those fruits that have the most bloom at the time of deciding 
which market they will be sent to. 
 

MATERIALS AND METHODS 
 
To detect wax bloom from blueberry (Vaccinium corymbosum L.) images, a novel database and a shallow 
Convolutional Neural Network (CNN) architecture were used. The shallow CNN architecture was trained using 
a Knowledge Distillation technique where the L2 divergence between Gaussian Mixture Models (Jian and 
Vemuri, 2011; Arellano and Dahyot, 2016) was proposed to model the distillation loss. Knowledge Distillation 
is a useful technique for transferring knowledge from large models to shallow ones. The smaller model (student 
model) acts as a student that learns from the larger model (teacher model) while being trained. 
 
Novel data base 
A database of blueberry images was captured using an iPhone 7 (Apple, Cupertino, California, USA) with 0.5x 
zoom. Each blueberry was captured using a white background and placed 10 cm from the camera. Natural light 
was used with no flash (images were captured between 09:00 and 13:00 h). The image resolution was 3024 × 
4032 pixels. Two set of images were taken. The first set consisted of 1502 images of blueberry fruits with visible 
wax bloom, captured and labelled as the “Bloom” set. The second set, labelled as “Non-Bloom”, consisted of 
images of blueberry fruits that were polished using a soft tissue to remove the wax bloom. Additional images 
of blueberries fruits which did not originally possess wax bloom were also added to this set for a total of 1942 
images. Two images were captured for each blueberry in both data sets, one on the scar side of the fruit and 
the other on the calyx end. Such a setting can be easily automated by using a small conveyor belt producing a 
scalable system to massively capture and process blueberry images without the need for physical handling. All 
blueberries used in these data sets were obtained from local supermarkets from three different brands: 
Hortifrut S.A, Jumbo, and Huertos Chile. Figure 1 shows the setup used for capturing the images and an example 
of each class (Bloom and Non-Bloom). After capturing the images, they were cropped to the size of each 
blueberry. To do so, several image processing techniques were used. First, the image edge was computed and 
filtered to isolate the blueberry contour. The image was then cropped using the values of the minimum and 
maximum pixel in each image. In cases where this procedure failed, the images were cropped manually. The 
data base was divided in three sets for training, testing, and validation respectively. For comparison, all models 
implemented in this work were trained and tested using the same data sets. A set of the final images in the 
database with different resolutions is shown in Figure 2. 

All the experiments were conducted using the following software/hardware set-up: Linux operating system 
(Ubuntu 22.04.5 LTS) with a GeForce RTX 3090 graphics processing unit (GPU) (Nvidia, Santa Clara, California, 
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USA). All models were implemented using the Python 3.8.10 programming language (Python Software 
Foundation, Wilmington, Delaware, USA) with Tensorflow-Keras 2.8.0. (TensorFlow-Keras, Mountain View, 
California, USA). 

 
 

 
Figure 1. Representative images demonstrating the image capture process used in this work. The 
images represent, from left to right, the setup used in image capture (a), a blueberry classified as 
“Bloom” (with wax bloom) (b) and the same blueberry classified as “NonBloom” (after wax bloom 
removal) (c). Figure (d) shows an example of the cropping process where only the image sections 
relating to blueberries are included in the final image.  
 
 

 
Figure 2. Examples of the image data sets created. Columns a, b, c are examples of “Bloom” 
blueberries and d, e, f are of “Non-Bloom”. In each column the same image is displayed using 
different resolutions. The resolutions are 1499 × 1556 (top), 224 × 224 (second), 28 × 28 (third) and 
14 × 14 (final).  

 
 

Customized shallow models for bloom classification 
A shallow CNN architecture with only two convolutional layers followed by two dense layers were used (Figure 
3). A dropout of 0.25 is included after each convolution for regularization. The input image was set to 14 × 14 
pixels. The total number of parameters of this network was 690 which represents only a small fraction of a 
typical architecture for image classification. As reference, one of the smallest architectures in the literature is 
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LeNet5 with 44046 parameters while bigger architectures can reach up to more than 32 million parameters as 
is the case with Vision Transformer architecture (Han et al., 2023). 

To train this shallow architecture a Distillation Knowledge technique using the L2 divergence between 
probability density functions was used. The details of the training process and the distillation loss used is 
described as follows. 

 
 

 
Figure 3. Representation of the customized shallow Convolutional Neural Network (CNN) 
architecture proposed for the classification of wax bloom in blueberries. 

 
 

Teacher model 
As a teacher model, a standard VGG16 architecture was trained using transfer learning, (pre-trained using 
ImageNet (Deng et al., 2009), with image resolution of 224 × 224 pixels. A search grid was used to find the best 
model hyper parameters. As a result, the best accuracy obtained was 99.2% when using Adam optimizer with 
a learning rate of 0.001. 
 
Distillation loss 
The Distillation Loss measures the difference between the probability distribution of the teacher soft targets 
and the probability distribution of the students. In this work, a mix between the cross entropy (CE) and the L2 
divergence between probability density functions was used. A parameter α was used to control the influence 
of the L2 divergence in the loss function (DL): 
 

 
 

where zL is the true label of the training data, zt the logit vector from the teacher model and zs the logit vector 
from the student model. When α is equal to zero, the model is trained without distillation knowledge and only 
the cross entropy between the estimated logit vector of the student zs and the true label of the data zL are 
used. To compute the L2 distance, two Gaussian Mixtures were modelled for the student model gs and the 
teacher model gt. Where, for the student model we have: 
 

 
 

and for the teacher: 

 
 
where n is the number of classes, wi

∗ the weight of each Gaussian such as 0 ≤ wi
∗ ≤ 1 and ∑ wi

∗n
i=1 = 1 ; u∗ is 

the mean of each Gaussian and Σ* the covariance (with ∗ = s, t). The L2 distance can then be computed as follows: 

 
 

 

This expression can be explicitly computed since the multiplication of two Gaussian Mixture have a closed 
form solution (Arellano and Dahyot, 2016): 
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all parameters (wi and i) were set using a search grid where the parameters with the best accuracy performed 
were selected).  
 

RESULTS AND DISCUSSION 
 
Several experiments were computed to test the performance of the distillation process using the proposed 
distillation loss. In all experiments, the same data sets were used for training, validation and testing. The 
learning rate of 0.01 and number of epochs were the same for all experiments. For comparison results when 
using only the Cross entropy (CE) and when using the CE plus the Kullback-Leibler (KL) divergence were also 
reported. The loss function using the KL distance can be expressed as follows: 
 

 
 

Table 1 shows the results obtained in all three cases. As can be appreciated the L2 distance is slightly better 
achieving an accuracy of 98%. Figure 4 shows the accuracy curves obtained during training and the confusion 
matrix for each case. 

 
 
Table 1. Comparison of the results obtained when training the model using three different loss 
functions: Euclidean distance-proposed (L2-Loss), Kullback-Leibler loss (KL-Loss) and cross entropy 
loss (CE-Loss). Table shows the most important metrics to compare the performance of the models. 

Model Accuracy PrecisionB RecallB F1-B PrecisionNB RecallNB F1-NB 

L2-Loss 98% 97% 99% 98% 99% 96% 98% 
KL-Loss 97% 94% 100% 97% 100% 94% 96% 
CE-Loss 97% 97% 98% 98% 98% 96% 97% 

 
 

 
Figure 4. Accuracy curve (top row) and confusion matrix (bottom) for the three loss methods used 
in the experiments: Euclidean distance-proposed (L2-Loss), cross entropy loss (CE-Loss) and 
Kullback-Leibler loss (KL-Loss). In the top row the y axis corresponds to the accuracy obtained during 
training from 0 to 1, where 1 represent 100% accuracy. 
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Comparison with other ML and DL models 
The goal of this paper was to achieve a light architecture with reasonable accuracy that could be implemented 
in small electronic devices. Therefore, all comparisons were performed with respect to the model size (or 
number of parameters) and accuracy. Firstly, a set of well-known Deep Learning architectures were 
implemented and tested to classify blueberries into two classes, “Bloom” and “Non-Bloom”. The state of the 
art in image classification involves architectures such as Vision Transformer amongst others. However, this 
architecture is extremely large which makes it difficult to implement in small electronic devices. Most such 
architectures involve the use of billions of parameters. 

Therefore, only small architectures were considered for comparison such as MobileNet (Sandler et al., 2018) 
and LeNet (Zhang et al., 2022). The VGG16 (Simonyan et al., 2015), on the other hand, is a medium size 
architecture that was included using different image resolutions to reduce its size. The MobileNetV2 
architecture was implemented in Keras using transfer learning technique where a model pre-trained with the 
ImageNet (Deng et al., 2009) database was used. Figure 5 shows the application of Grad-CAM to visualize where 
in the image the model is paying attention. As shown, the pixels that fire the network are those that contain 
wax bloom. This result demonstrates consistency in what the model is learning and the classification problem 
to solve. Result accuracy achieved and the size of the model are reported in Table 2. 

 
 

 
Figure 5. Activation maps computed using Grad-Cam showing the original blueberry image (top row) 
and its corresponding activation map (bottom row).  

 
 
A much smaller architecture called LeNet5 was also implemented. This model was trained from scratch 

using a resolution of 28 × 28 pixels. A grid search was used to find the best parameters of the model. As a result, 
an accuracy of 98.0% was achieved. This is a very good result for such a small model that only contains 44 046 
parameters (Table 2). A more recent work using the same database of this work and Bayesian-ensembled CNN 
is also included in the comparison Table 2 (Arellano et al, 2025). 

In addition, a second set of machine learning models namely Support vector machine (SVM) (Gholami et al., 
2017), AdaBoost (Friedman et al., 2000), Random Forest (Ibrahim et al., 2022), and MultiLayer Perceptron 
(MLP) were also implemented (Du et al., 2022). Such models are smaller in size and do not extract features 
from the images. Instead, they use all image pixels as features. In all these models an image resolution of 14 × 
14 pixels was used. The parameters were optimized using a grid search with k = 5-fold cross validation. The final 
parameters chosen for each model are shown in Table 3. 

The results obtained from these models are shown in Table 2. All models performed similarly. The highest 
accuracy obtained was 97% and was achieved using the SVM model. Of this group of algorithms Random Forest 
is the biggest model while MLP is the smallest one. However, the model with the best resulting accuracy is SVM 
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which has a size over 500 KB without compression and 154 KB when compressed. This compression does not 
compromise accuracy. To improve these results, experiments using higher resolution images were 
implemented for the four models. However, their accuracy did not increase significantly with the increase in 
model size (data not presented). For instance, the SVM used with images of 224 × 224 pixels, achieved similar 
accuracy (97%) with a model size of 142.5 and 28.2 MB when compressed. 

 
 

Table 2. Results obtained for all models implemented, it shows the name of the model 
(architecture), model size in KB or number of parameters and accuracy obtained when tested using 
the same dataset.  

Model Resolution 
Model size KB 
(compressed) Parameters Accuracy 

VGG16  224 × 224  13 268 738 99.2% 
VGG16  128 × 128  50 382 658 99.0% 
VGG16  64 × 64  39 896 898 98.4% 
MobileNetV2 224 × 224  5 148 154 98.4% 
LeNet5 28 × 28  44 046 98.0% 
Proposed 14 × 14 24 690 98.0% 
Support Vector Machine (SVM) 14 × 14 584/150  97.0% 
Bayesian-CNN 14 x 14  1052 96.9% 
Random Forest (RF) 14 × 14 1200/251  96.0% 
AdaBoost 14 × 14 314/51  96.0% 
Multilayer Perceptron (MLP) 14 × 14 64/56  95.0% 

 
 

Table 3. Parameters used in the machine learning models implemented: Random Forest (RF), 
Support Vector machine (SVM), Multilayer Perceptron (MLP) and AdaBoost.  

Model Parameters Value 

Random Forest Criterion Entropy 
Max depth 15 
Features auto 

Number of estimators 10 
Support Vector Machine (SVM) C 10 

Gamma 0.1 
Kernel rbf 

Multilayer Perceptron Activation function tanh 
alpha 0.05 

Learning rate Constant 
Solver Adam 

AdaBoost Learning rate 0.4 
Number of estimators 400 

 
 

CONCLUSIONS 
 
In this work, a small Deep Learning architecture (Shallow model) trained using Distillation Knowledge and the 
L2 distance is presented. It has been shown that the L2 distance between density functions can be used to 
compute the Distillation Loss when students and the teachers are modelled using Gaussian Mixtures. The 
resulting shallow Convolutional Neural Network (CNN) architecture trained using Distillation Knowledge have 
achieved similar results than bigger models (VGG16) with only a tiny fraction of the parameters. The best results 
show that only 690 parameters are enough to achieve 98% accuracy in bloom classification. This shallow model, 
in addition, also demonstrated better classification results than standard machine learning techniques such as 



CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 85(4) August 2025 - www.chileanjar.cl 609 

Random Forest, Support Vector Machine, Multilayer Perceptron and AdaBoost. The development of novel 
shallow image classification model techniques like those described in this work enables an effective 
identification of the presence of a wax bloom in blueberries without the need for significant computational 
resources.  
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