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USE OF ANALYTIC FACTOR STRUCTURE TO INCREASE HERITABILITY 
OF CLONAL PROGENY TESTS OF Pinus taeda L.

Jaime Zapata-Valenzuela1

Advanced variance-covariance structures are commonly used in genetic evaluation of crops to account for micro-site 
variability and achieve higher accuracy of predictions to increase selection efficiency. Various genetic variance-covariance 
structures were explored to predict best linear unbiased genetic merits of 453 loblolly pine (Pinus taeda L.) cloned progeny 
tested at 16 different locations in the southern U.S. Statistical models were compared using model fit statistics, variance 
components and genetic parameters. Among the models explored, spatial autoregressive error correlation with independent 
residual term for the R side with a factor analytic structure for the G side of the mixed model was superior. The model 
produced one of the smallest fit statistics (LogL equal to -2694), a small error variance (12.72), and the highest broad-sense 
heritability (0.45), compared with the default homogeneous error and genetic variance-covariance structure (statistical 
significance at P < 0.05). We concluded that the combination of specific structure for error and genetic design was effective 
to remove spatial-related variance, and to increase the accuracy of predictions of clonal genetic values, which could be used 
as analytical tool for increasing the selection efficiencies in forest genetic trials.

Key words: Linear mixed model, quantitative forest genetics, genetic variance.

1North Carolina State University, Department of Forestry and 
Environmental Resources, Raleigh, North Carolina 27695-8008, 
USA. (jzapata@arauco.cl)
Received: 7 November 2011.
Accepted: 9 July 2012.

he incorporation of clonal forestry as an operational 
breeding and development option for forestry 

programs in the southern United States could potentially 
result in large volume gains for loblolly pine (Pinus taeda 
L.), with estimates of 60-70% gain above open-pollinated 
families or mass-controlled pollination systems (Whetten 
and Kellison, 2010). The accurate prediction of the genetic 
value of clones becomes a critical step in determining the 
ranking of the phenotypes within a selection program. 
To maximize the cost-efficiency of forest field testing, 
the data should be analyzed using the most appropriate 
statistical methods. 
 Many model approaches assume simple, often 
inappropriate, within-test error structures, such as 
randomized incomplete block design (RIBD), and 
a common error variance for all tests. Gezan et al. 
(2006) showed that appropriate choice of experimental 
designs can yield considerable improvements in clonal 
testing. Using simulated data based on a single site 
test of 256 clones arranged in single-tree plots with no 
missing observations, it was found that row, column 
and RIBD with a block size of eight trees had the 
highest individual broad-sense heritability estimates 
(H2). In another study using linear mixed models, 

Isik et al. (2005) analyzed clonal field tests that were 
established at two sites using rooted cuttings from 450 
clones of eight full-sib families of loblolly pine. At age 
four, there were significant differences among full-
sib families and among clones within families for all 
traits analyzed. Clonal selection yielded considerable 
genetic gains for volume over the means of all the 
clones at both South Carolina and Florida sites. Also, 
Isik et al. (2008) used 12-yr-old data from 43 clones 
from nine full-sib families of loblolly pine to measure 
the variation of microfibril angle using a quadratic 
mixed model fitted over wood rings as predictor 
variable. This statistical approach had the advantage 
of choosing a better residual variance-covariance 
structure that correctly fit the data.
 Mixed model analyses of unbalanced data can include 
modeling of genetic variance-covariance structures. 
Examples of the alternatives studied in previous studies 
include regression analysis, additive main effects and 
multiplicative interaction (AMMI) model, and factor 
analytic models (Gauch, 1992; Meyer, 2009; Raman et 
al., 2011). The AMMI model was originally proposed as 
a fixed effects model. Assuming genotypes as random, the 
genetic by environment interaction (G×E) can be analyzed 
in a mixed-model framework with a factor analytic 
covariance structure to model the multiplicative terms. 
The factor analytic form framework has been increasingly 
used in plant breeding (de los Campos and Gianola, 
2007; Meyer, 2009; Raman et al., 2011), because there is 
interest in structures that utilize the principal components 
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of a covariance matrix. It has become accepted that such 
structures can be fit directly within the mixed models 
approaches commonly applied for both estimation of 
variance-covariance components and the prediction of 
genetic merit for selection purposes.
 Similarly, typical field designs used for genetic testing 
of forest trees have been randomized complete/incomplete 
block design, or occasionally split-plot designs, but spatial 
analysis has not been widely utilized in forest genetic 
tests (Costa e Silva et al., 2001). The main goal is to 
model the variation related to the physical location of the 
experimental units, given by the arrangements of columns 
and rows within the field test. The spatial component is fit 
as the form of separable two-dimensional autoregressive 
residuals. It is expected that spatial models would give 
significant improvement over standard design models 
allowing further genetic gain. Dutkowski et al. (2006) 
analyzed height and diameter from 55 tests to gain a better 
understanding of the utility of spatial analysis in a more 
wide ranging scenario. The spatial model yielded a more 
realistic and satisfying description of the site variability 
and gave a better understanding of the nature of that 
variation. 
 The objective of this study was to compare different 
matrix structures for the genetic random effects to fit the 
best statistical model in estimating the genetic merit for 
453 clones. We analyzed 5-yr-old data of volume in clonal 
field tests of loblolly pine growing in multiple sites across 
southern United States.

MATERIALS AND METHODS

Genetic material and pedigree information
For the study, 28 parents were used to produce 23 
full-sib families and two open-pollinated families. 
Though the majority of crosses were single-pair 
mating, several families were related by a common 
male or female parent. From each cross of female 
and male parents, clones were produced via somatic 
embryogenesis (Bettinger et al., 2009). A deep 
pedigree file was designed, containing a section of 
the identity of each parent used to produce the full-
sib families or open-pollinated families, and a second 
section containing the identity of each clone generated 
from their corresponding parent’s combinations. 

Study sites, experimental design, and data collection
Three series of tests were planted between 2000 and 2002, 
nine sites were planted in Georgia (GA), five sites were 
planted in Mississippi (MS), and two sites were planted 
in South Carolina (SC). A total of 16 sites were planted 
with 526 clones. The experimental design used was alpha-
lattice incomplete block design with single tree plots. The 
average of clones/site was 163. Out of the 526 clones, we 
removed 73 clones that had fewer than 10 living ramets/
clone, and/or clones were planted on fewer than three 

sites. The final data set included 453 clones, and a total 
of 14 704 loblolly pine trees were measured. Calipers 
were used to obtain stem diameter at 1.4 m above ground 
line. Total height was measured with a precision of 0.03 
m using an hypsometer (Vertex IV, Haglof Inc., Langsele, 
Sweden). Volume was calculated using the metric form 
of the formula given in Sherrill et al. (2008): volume = 
[0.95456089 + (0.28241587 × diameter2 × height/10)]. 
Using a SAS script, we standardized the data using a 
mean of 100 for height and volume variances calculated 
from the data (SAS Institute, 2010). As required for 
spatial analysis, the data were organized into a grid 
to be read correctly in the model. Table 1 contains the 
main descriptive information for the 16 sites assigned to 
this study. The different sites were presented with their 
information of year of planting, location, and number of 
clones. 

Statistical analysis
Variance-covariance structures explored for this study 
were summarized in Table 2. The linear mixed model used 
for all the different structures comparison was described 
under the matrix form:  
                                 y = Xb + Zu + e [1]
where y is the vector of observations representing the 
trait of interest (volume); the vector of parameters b and 
u which are the fixed and random effects to be estimated, 
respectively. Within the random effects, the genetic 
variance is due to genetic differences among clones (σ2

c = 
½ σ2

a + ¾ σ2
d + σ2

i), and genetic difference among families 
(σ2

f = ½ σ2
a + ¼ σ2

d) where σ2
a, σ2

d, and σ2
i are additive, 

dominance, and epistatic genetic variances, respectively 
(Isik et al., 2008). We included the clone effect with 
expectations ~ N (0, Aσ2

c), where A is the numerator 
relationship matrix and G = Aσ2

c is a nonsingular matrix; 
the variance due to the family had expectations ~ N (0, 
Iσ2

f), where I is an identity matrix. Also, we included 

 1 2000 GA 135 0.034 36.1
 2 2000 GA 135 0.024 47.3
 3 2000 MS 133 0.023 39.8
 4 2000 MS 128 0.025 39.5
 5 2000 GA   86 0.023 42.4
 6 2001 GA 182 0.012 65.3
 7 2001 GA 192 0.017 48.7
 8 2001 GA 187 0.026 40.2
 9 2001 GA 182 0.025 45.5
10 2001 SC 193 0.023 49.8
11 2001 MS 191 0.026 47.3
12 2002 GA 174 0.014 56.3
13 2002 GA 175 0.006 58.2
14 2002 SC 176 0.018 43.1
15 2002 MS 176 0.020 43.2
16 2002 MS 175 0.016 47.2

Table 1. Descriptive statistics for the 16 sites analyzed. The mean and 
coefficient of variation (CV) of volume were presented for the raw data, 
to have a dimension of the variable dispersion among sites. The CV for 
volume ranged from 36.1% to 65.3%.
Site 
number

Year of 
planting

Number 
of clones

1GA: Georgia, MS: Mississippi, SC: South Carolina.
2Values were reported for non-standardized data. Number of blocks per site was 8 except for 
sites 6 and 9 where there were four blocks at each site.

State1
Mean 
(m3)2 CV2
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the block term as random with expectations ~ N (0, 
Iσ2

b). The denoted X and Z are the design or incidence 
matrices. The term e represented the error component or 
vector of residuals with expectations N (0, Iσ2

e), where I 
is the identity matrix, σ2

e is the error variance, and 
R = Iσ2

e is a nonsingular matrix (Lynch and Walsh, 1998; 
Balding et al., 2007). The variance-covariance matrix of 
observations is given by the expression Var (y) = V = ZGZ’ + 
R. Fixed and random effect solutions were obtained by 
solving the mixed-model equations (Henderson, 1984). 
The best linear unbiased predictions (BLUP) of each 
clone were obtained by solving mixed model equations 
as û = GZ’V-1 (y – Xb), where b  = (X’V-1X) X’V-1y is the 
generalized least-square solution for b (Lynch and Walsh, 
1998). 

Definition of matrices structure and model 
development
In general, R and G structures are typically formed as a 
direct product (⊗) of particular variance models. When 
the model is specified, the order of terms in a direct 
product must agree with the order of effects in the 
corresponding model term. Also, variance models may 
be correlation matrices or variance matrices with equal or 
unequal variances on the diagonal (Gilmour et al., 2009). 
In our study, the default and simplest homogeneous R 
structure was that residual effects were independently and 
identically distributed (IID). The IID form was designed 
as matrix form where residuals were homogeneous across 
16 sites: R = I1σ2

e1 ⊗ I2σ2
e2 ⊗, … , ⊗ I16σ2

e16, where I is an 
identity matrix and σ2

e1 = σ2
e2 = σ2

e3 =, … , σ2
e16.  

 Different forms of R can be used in the model 
definition and we used the identity matrix for the default 
IID form, and compared it with an autoregressive (AR1) 
form correlation structure. The AR1 variance-covariance 
matrix of the spatial design was defined as: Var (e) = R = 
σ2 Σ (α) = σ2 Σr (αr) ⊗ Σc (αc) + Iσ2

η, where Var (e) is the 
error variance-covariance matrix, with σ2 being a spatially 
dependent variance and σ2

η is the independent error 
variance. The Σ denotes the spatial correlation matrix as a 
function of the number of α parameters and has associated 
variance σ2. The autoregressive form is feasible when the 
data from observations that are close together are more 
similar than those that are further apart (Gilmour et al., 
2009). As the sites were arranged in rectangular arrays, 
we used a two-dimensional coordinate system to define 
the location of each observation in the row (r) and column 

(c), as usually given in other studies (Dutkowski et al., 
2002; Cumbie, 2010).
 Similarly, the simplest structure for G matrix in the 
linear model defined in Equation [1], was represented as a 
general matrix form as:
 

  [2]

 The diagonal of this matrix was represented by the 
number of sites with 16 levels. Each site represented 
a sub-matrix. In this structure the genetic variance 
(σ2

c) associated with the clone effect was assumed 
homogeneous across 16 sites (σ2

c1 = σ2
c2 = σ2

c3 =, … , σ2
c16), 

but the genetic variance can be heterogeneous, different 
(σ2

c1 ≠ σ2
c2 ≠ σ2

c3 ≠, … , σ2
c16). The off-diagonal elements 

(e.g., σ1,2) are the covariances of individuals between pair 
of sites. The covariances can be homogeneous (σ1,2 = σ1,3 
=, … , = σ1,16) or heterogeneous (σ1,2 ≠ σ1,3 ≠, … , ≠ σ1,16) 
to model G×E interactions. We tested a diagonal matrix 
containing homogeneous variance components associated 
with the genetic effect and homogeneous correlations of 
the individuals across the sites. This structure is commonly 
named compound symmetry or CS (Gilmour et al., 2009). 
Also, we tested heterogeneous genetic variances and 
homogeneous covariances (CH structure). The full G 
matrix is the product of two matrices with the dimension 
of 16 × 16 (number of sites) and the identity matrix I with 
dimensions of number of clones (Inc) at each site. Since 
individuals are not independent but genetically related, I 
matrix at each site can be substituted by the numerator 
relationship matrix A.
 Finally, we specified both heterogeneous genetic 
variances and genetic covariances for G structure. 
This was achieved using a factor analytic form or FA1 
structure (de los Campos and Gianola, 2007). According 
to Meyer (2009) and Raman et al. (2011), the objective of 
the factor analytic approach is oriented to G×E interaction 
experiments, where there is accounting for the genetic 
covariances among sites in terms of smaller number 
of k unknown factors. In FAk model, the covariance 
matrix was modeled as ΣFA = ΓΓ’+ Ψ where Γ is the 
matrix of loadings on the covariance scale, and Ψ = 
diag {ψi} is a diagonal vector of specific variances. 
For k = 1 environmental covariate or factor, the matrix 
representation was:

IID+FA1 Homogeneous Factor analytic, heterogeneous Heterogeneous  -3010
AR1+σ2

η+CS AR1 + independent error, heterogeneous  Compound symmetry Homogeneous -2751
AR1+σ2

η+CH AR1 + independent error, heterogeneous Heterogeneous  Homogeneous  -2711
AR1+σ2

η+FA1 AR1 + independent error, heterogeneous Factor analytic, heterogeneous Heterogeneous  -2694

Table 2. Variance-covariance structures used for clonal data analyses and estimated model fit statistics (LogL) for each structure. The structures with 
spatial adjustment had the smallest LogL values. Also, the structure AR1+σ2

η+FA1 was found statistically significant (P < 0.05).

Structure name R error structure LogLG variance structure G correlation structure

σ2
cl   σ1,2    ·   σ1,16

σ2,1   σ2
c2   ·   σ2,16

    ·        ·    ·     ·
σ16,1   σ16,2   ·  σ2

c16

G= ⊗Inc = I16 ⊗Aσ2
c
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  [3]

where σ1 is the loading on a covariance scale for the 
first site. Also, σ2

c1 ≠ σ2
c2 ≠ σ2

c3 ≠, … , σ2
c16. Similarly, 

In FAk model, the variance-covariance matrix Σ(w×w) was 
modeled on the correlation scale as Σ = DCD, where 
D(w×w) is diagonal such that DD = diag (Σ). The component 
C(w×w) is a correlation matrix of the form LL’ + E, where 
L(w×k) is a matrix of loadings on the correlation scale and E 
is diagonal defined such that diag (LL’ + E) is identity. For 
k > 1, higher-order models are required but they were no 
tested in our study. For all the matrix structures compared, 
the covariance was obtained from the definition of the 
genetic correlation (rg), which was defined by Falconer 
and Mackay (1996). All the mixed model equations were 
solved by ASReml version 3 (Gilmour et al., 2009), which 
was used in this work due to its flexibility to analyze 
unbalanced designed experiments, multi-environment 
trials, and irregular spatial data. 

Model fit statistics
According to Gilmour et al. (2009), a general method 
for comparing the fit of nested models fitted by restricted 
maximum likelihood (REML) is the REML likelihood ratio 
test (LRT). The fixed effects for models must be the same 
for LRT to be valid but also the same parameterization is 
required. If LR2 is the REML log-likelihood of the more 
general model and LR1 is the REML log-likelihood of 
the restricted model (that is, the REML log-likelihood or 
simply LogL under the null hypothesis), then the LRT can 
be defined as the following statistic: D = 2 log(LR2/LR1) = 
2 [log(LR2) − log(LR1)]. If Ri is the number of parameters 
estimated in model i, then the asymptotic distribution of 
the LRT under the restricted model is χ2 with degrees of 
freedom = R2 − R1. The LRT is implicitly two-sided. The 
approximate P value for the LRT statistic D, is 0.5{1-
Pr(χ2 ≤ d)} where d is the observed value of D. Different 
models were compared using the LRT calculated for each 
model and tested against the χ2 distribution and P < 0.05. 
Results of the model fit statistics are listed in Table 2.

Heritability estimates and G×E interaction
We accounted for relatedness among clones using pedigree 
relationships in estimations of variance components and 
standard errors. The variance components estimates were 
used to estimate single site broad-sense heritability (H2) 
for each fitted variance-covariance structure definition, 
using the following general ratio of the genetic variance 

and phenotypic variance: H2 = [σ2
c + σ2

f/(σ2
c + σ2

f + σ2
e)], 

where the different variances were defined in Equation 
[1]. For spatial AR1+σ2

η with a disentangled residual 
variance into a spatial residual and independent residual 
variance, we used the independent residual variance (σ2

η) 
for the heritability estimation. Heritability estimates 
and their standard errors were estimated using the Delta 
method (Lynch and Walsh, 1998), and implemented using 
ASReml (Gilmour et al., 2009). The results of the main 
variance components and heritability estimates were 
listed in Table 3. As a graphycal measurement of G×E 
interaction, a linear plot between site loadings and BLUP 
for a random subset of 20 clones was produced from the 
solution file of AR1 + σ2

η + FA1 structure, to examine the 
G×E interaction for each site loading used in the modeling 
(Meyer, 2009), as shown in Figure 1.

RESULTS AND DISCUSSION

We reported a series of statistical approaches to analyze 
clonal replicated progeny for volume in loblolly pine. 
The best model fit was achieved by controlling the error 
variances using a spatial design plus its combination 
with a factor analytic structure for the clonal and family 
co(variances). 

Variance-covariance structures comparison
In our study, any model that made R and G structures 
different from default IID assumption for standard 

IID+FA1 8.951 14.792 1.25 0.38
AR1+σ2

η+CS 9.07 12.673 0.78 0.42
AR1+σ2

η+CH 9.061 12.713 0.78 0.43
AR1+σ2

η+FA1 9.051 12.723 0.79 0.45

Table 3. Clonal variance (σ2
c), error variance (σ2

e), block variance (σ2
b), and 

broad-sense heritability (H2) according to different variance-covariance 
structures. The structure AR1+σ2

η+FA1 increased the heritability and 
decreased both the error and block variances, compared with the default 
IID+FA1 model.
Structure

1Value was the mean of 16 clonal variances across sites.
2Value was the mean of 16 residual variances across sites.
3Value reported was the independent error variance.
The standard error of the heritability estimates ranged from 0.02 to 0.06.

σ2
c σ2

e σ2
b H2

σ2
cl + σ1 σ1

σ1 σ2

·
σ1 σ16

σ1 σ2

σ2
c2 + σ2 σ2

·
σ2 σ16

σ1 σ16

σ2 σ16

·
σ2

cl6 + σ16 σ16

·
·
·
·

ΣFA =

σ1

σ2

  ·
σ16

Γ=

σ2
cl  0       ·     0

 0    σ2
c2  ·     0

 0    0     ·    ·
 0    0       ·    σ2

c16

Ψ=

Figure 1. Estimated breeding values using best linear unbiased predictions 
(BLUP) vs. 16 site loadings (two loading values were equal) of a random 
subset of 20 clones after fitting of AR1+σ2

η+FA1 structure. The general 
flat trend of lines for most of the predictions across different site loadings 
values was a clear sign of small G×E interaction.
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models, was superior in terms of LogL parameter. The 
lowest LogL value (more positive) was obtained for the 
combination of spatial design and factor analytic form 
(AR1 + σ2

η + FA1). After calculating the LRT between 
this model and each of the others, it was found a highly 
statistical significant difference (P < 0.05). The standard 
model has been used in previous studies (Dutkowski et 
al., 2002; Smith et al., 2002; Raman et al., 2011) as a 
benchmark model for simplicity reasons or maybe due to 
the more difficult implementation of advanced models. 
We found that the only constraint to use advanced models 
was a longer computational time required for convergence 
(mainly for structures CH and FA1). The CS structure was 
the simplest structure for genetic co(variances). It only 
required the estimation of a correlation parameter and 
one genetic pooled variance, but it also implied that all 
sites had the same genetic variance and all pairs of sites 
had the same covariance (hence the correlation was the 
same, as also assumed for CH structure). This may not be 
a realistic scenario for progeny tests of forest trees tests, 
especially because they were planted in different edaphic, 
climatic conditions. The CS structure was also found to 
have a high Akaike Information Criterion value when it 
was compared with heterogeneous variance-covariance 
structures for treatment, site factors in crops (Raman et 
al., 2011). They pointed out that treatments evaluated in 
different environments (considered as random factor), 
had different levels of error variation as the tests were 
conducted with different levels of precision, which was 
not captured by a simple structure of co(variances) as CS.
 We preferred the FA1 structure for genetic 
co(variances) because it allowed to model the full G 
matrix, with heterogeneous co(variances). Moreover, 
FA1 structure combined with spatial design increased the 
model performance (best and significant LogL value), 
by increasing the clonal variance mean for 16 sites and 
decreasing the residual variances. The better estimates 
for this structures resulted in increased clonal mean 
repeatabilities for almost all sites (not shown), which 
represented an important gain by allowing variances 
to be different for each site. A fair comparison with 
FA1 structure should consider to fit a similar advanced 
structure. One example is the unstructured form of G 
matrix. It can be used to calculate the genetic correlations 
among pairs of sites. However, Smith et al. (2002) and 
Isik et al. (2008) suggested that unstructured G may be 
inefficient or unstable even for large number of sites or 
environments. We tested an unstructured G form that 
lead to less precise parameter estimation due to the 
large number of parameters (183 in our experiment), in 
addition to the presence of missing values. Therefore, 
the factor analytic form represented a more parsimonious 
representation and hence was reported in this study. 
 This experiment demonstrated the feasibility of using 
factor analytic form for the G matrix. The advantage 
is that fitting this structure to the covariance matrix 

was flexible enough to accommodate heterogeneity of 
variances and differences in genetic correlations between 
environments, which tended to be small. Also, the 
structure was parsimonious enough to allow estimation of 
the parameters involved with high accuracy. Additional 
improvement could be achieved using FAk models of 
second, or third order, but when k > 1, it is necessary to 
impose constraints to ensure uniqueness of the structure 
and avoid interpretation problems of the factor analytic 
model. Smith et al. (2002) demonstrated that a FA2 model 
accounted for 77% of the genetic variation against 50% 
accounted by a FA1 model for a multi-environmental test 
study. 
 In addition, the use of a spatial design adding an 
independent residual variance component allowed the 
removal of spatially dependent residual noise from the 
model, which was expected according to the theory 
of models that include both sources of non-genetic 
variation (Stefanova et al., 2009). This finding was 
important evidence of the need to separate spatial from 
the independent residual variances, in order to capture 
the random tree-to-tree variation. Dutkowski et al. (2002) 
pointed out that the independent residual term is almost 
always present in forestry trials and accounting for it is 
necessary. This is also made to avoid inflating the additive 
genetic variance and avoid misleading conclusions from 
fitting an inappropriate model.  

Variance components and genetic parameters
Table 3 summarized the main variance components for the 
four scenarios under analysis. To facilitate the comparison, 
an average of variance was used for the models with 
heterogeneous genetic variances (CH and FA1). It was 
noticeable that the standard error mean was stable for 
different model scenarios. Also, the residual variance and 
block variance for each scenario was reported, where both 
non-genetic variances were reduced for the AR1+σ2

η form 
with any combination with a G structure.
 We obtained higher broad-sense heritabilities or H2 
estimates for sites when more complex genetic and 
environmental variances were used. For example, the 
mean broad-sense heritability across sites was 0.38 for 
IID scenario, and increased from 0.42 to 0.45 for AR1 
plus a complex (co)variance structure. In general, the 
clone broad-sense heritability was higher than other 
studies for growth traits in loblolly pine (Gezan et al., 
2006). This was due to the large number of trees used 
for each clone in this study, resulting in more reliable 
estimates of the variances. The statistical analysis was 
able to reduce error and minimize bias in the estimates. 
Thus, the use of clonally replicated progeny tests reduced 
the environmental noise and enabled more accurate 
prediction of genetic merit for different clones. The use 
of repeated measures of the clonal data is an experimental 
design suitable for being applied in other experiments such 
as the study of the change in a trait or variable measured at 
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different times, or individuals exposed to different level of 
the same treatment (White et al., 2007). 
 Since we had data from 16 different sites, we used 
FA1 to include an advanced structure for modeling G×E 
interaction. Genetic correlations were high, with a mean 
of 0.86 and a range of 0.65 to 0.99 (the standard error 
ranged from 0.01 to 0.04). They were obtained for the 
best fitted AR1 + σ2

η + FA1 structure. The high values 
of genetic correlations obtained for FA1 structure were 
evidence that there were no strong G×E interaction in 
our clonal data. The small G×E interaction effect was 
reflected in the flat trend of estimated breeding values 
of a subset of the clones for each of the 16 site loadings 
values obtained from FA1 structure plotted in Figure 
1. The same trend was observed for all 453 clones, but 
for visual simplicity Figure 1 only plotted 20 clones. If 
interaction was present, the cross of lines for different 
loadings would have been evident. The analysis of G×E is 
relevant in forestry breeding programs due to the diverse 
range of environments where tree can be cultivated. The 
main advantage of FA1 model was to account for the (co)
variances in terms of smaller hypothetical factors (de los 
Campos and Gianola, 2007). The FA1 approach could be 
used to obtain a class of structures for the genetic variance 
matrix G. The model is also postulated in terms of the 
unobserved clonal effects in different sites, which had 
associated loading factors (Meyer, 2009).

CONCLUSIONS

The use of spatial structure combined with a 
heterogeneous factor analytic structure for genetic 
variances and covariances was more efficient than simple 
IID assumption for variances commonly used in forestry 
tests, because of better controlling of site variability and 
removing of spatial-related variance. The factor analytic 
structure was found to increase the estimates genetic 
variances and broad-sense heritability due to effective 
accounting for heterogeneity of effects among pair of 
sites. The use of advanced linear mixed models for clonal 
data in a commercial pine species was proved to be more 
efficient than simple assumptions because of increased 
broad-sense heritability, reliable breeding values were 
obtained, and issues of model convergence, computational 
time were avoided for larger data sets.
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Uso de la estructura de factor analítico para 
aumentar la heredabilidad de ensayos clonales de 
Pinus taeda L.  Diversas estructuras avanzadas de 
varianzas-covarianzas se han utilizado comúnmente en 
análisis genético de cultivos agrícolas para detectar la 
variabilidad del micro-sitio y lograr una alta precisión 
en las predicciones del valor genético, mejorando la 
eficiencia de la selección. Diferentes estructuras de 
varianza-covarianza fueron exploradas para predecir el 
mejor predictor linear insesgado del valor genético en 453 
clones de Pinus taeda L., evaluados a través de 16 sitios 
en el sureste de Estados Unidos. Los modelos estadísticos 
fueron comparados usando parámetros de diagnóstico, 
componentes de varianza y parámetros genéticos. De los 
modelos comparados, el mejor modelo fue el escenario 
con ajuste de la varianza residual independiente de la 
forma autoregresiva para la matriz R más una estructura 
de factor analítico para la matriz G. El modelo generó el 
menor valor del parámetro de diagnóstico (LogL igual a 
-2694), una baja varianza residual (12,72), y la más alta 
heredabilidad en sentido amplio (0,45), comparada con las 
estructuras básicas de varianzas-covarianzas homogéneas, 
a un nivel de significancia de P < 0,05. Se concluye que 
la combinación de una estructura específica para el efecto 
genético y residual resultó efectiva para remover la 
variabilidad relacionada con el espacio, e incrementar la 
exactitud de la predicción de los valores genéticos, lo cual 
podría usarse como herramienta analítica para aumentar la 
eficiencia de la selección en ensayos genéticos forestales. 

Palabras clave: modelo lineal mixto, genética forestal 
cuantitativa, varianza genética.

LITERATURE CITED

Balding, D.J., M. Bishop, and C. Cannings. 2007. Handbook of 
statistical genetics. 3rd ed. 1445 p. Wiley-InterScience, Wiltshire, 
England. 

Bettinger, P., M. Clutter, J. Siry, M. Kane, and J. Pait. 2009. Broad 
implications of southern United States pine clonal forestry on 
planning and management of forests. International Forestry 
Review 11:331-345.

Costa e Silva, J., G.W. Dutkowski, and A.R. Gilmour. 2001. 
Analysis of early tree height in forest genetic trials is enhanced 
by including a spatially correlated residual. Canadian Journal of 
Forest Research 31:1887-1893. 

Cumbie, W.P. 2010. Association genetics for growth, carbon isotope 
discrimination, and stem quality in loblolly pine. 153 p. PhD. 
thesis. North Carolina State University, Raleigh, North Carolina, 
USA. 

De los Campos, G., and D. Gianola. 2007. Factor analysis models 
for structuring covariance matrices of additive genetic effects: a 
Bayesian implementation. Genetics Selection Evolution 39:481-
494.

Dutkowski, G.W., J. Costa e Silva, A.R. Gilmour, and G.A. Lopez. 
2002. Spatial analysis methods for forest genetic trials. Canadian 
Journal of Forest Research 32:2201-2214. 

Dutkowski, G.W., J. Costa e Silva, A.R. Gilmour, H. Wellendorf, and 
A. Aguiar. 2006. Spatial analysis enhances modeling of a wide 
variety of traits in forest genetic trials. Canadian Journal of Forest 
Research 36:1851-1870.  



315314 CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 72(3) JULY-SEPTEMBER 2012CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 72(3) JULY-SEPTEMBER 2012

Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative 
genetics. 464 p. Longman Group, Essex, England.

Gauch, H.G. 1992. Statistical analysis of regional yield trials: AMMI 
analysis of factorial designs. 278 p. Elsevier Science Publishers 
B.V., Amsterdam, The Netherlands.

Gezan, S.A., T.L. White, and D.H. Huber. 2006. Achieving higher 
heritabilities through improved design and analysis of clonal 
trials. Canadian Journal of Forest Research 36:2148-2156.  

Gilmour, A.R., B.J. Gogel, B.R. Cullis, and R. Thompson. 2009. 
ASReml user. Guide release 3.0. 372 p. VSN International Ltd., 
Hemel Hempstead, UK.

Henderson, C.R. 1984. Applications of linear models in animal 
breeding. 462 p. University of Guelph, Guelph, Canada.

Isik, F., B. Goldfarb, A. LeBude, B. Li, and S. McKeand. 2005. 
Predicted genetic gains and testing efficiency from two loblolly 
pine clonal trials. Canadian Journal of Forest Research 35:1754-
1766.  

Isik, F., M. Gumpertz, B. Li, B. Goldfarb, and X. Sun. 2008. Analysis 
of cellulose microfibril angle using a linear mixed model in Pinus 
taeda clones. Canadian Journal of Forest Research 38:1676-1689.  

Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative 
traits. 980 p. Sinauer Associates Sunderland, Massachusetts, USA.

Meyer, K. 2009. Factor-analytic models for genotype × environment 
type problems and structured covariance matrices. Genetics 
Selection Evolution 41:21.

Raman, A., J.K. Ladha, V. Kumar, S. Sharma, and H.P. Piepho. 2011. 
Stability analysis of farmer participatory trials for conservation 
agriculture using mixed models. Field Crops Research 121:450-
459.

SAS Institute. 2010. SAS User’s guide. Version 9.1. 7886 p. SAS 
Institute, Cary, North Carolina, USA.

Sherrill, J.R., T.J. Mullin, B.P. Bullock, S.E. McKeand, R.C. Purnell, 
M.L. Gumpertz, and F. Isik. 2008. An evaluation of selection for 
volume growth in loblolly pine. Silvae Genetica 57:22-28.

Smith, A., B. Cullis, and R. Thompson. 2002. Exploring variety–
environment data using random effects AMMI models with 
adjustments for spatial field trend: Part 1: Theory. In Kang, M.S. 
(ed.) Quantitative genetics, genomics and plant breeding. Oxford 
University Press, Cary, North Carolina, USA.

Stefanova, K.T., A.B. Smith, and B.R. Cullis. 2009. Enhanced 
diagnostics for the spatial analysis of field trials. Journal of 
Agricultural, Biological, and Environmental Statistics 14:392-
410.

Whetten, R.W., and R. Kellison. 2010. Research gap analysis for 
application of biotechnology to sustaining US forests. Journal of 
Forestry 108(4):193-201.

White, T.L., W.T. Adams, and D.B. Neale. 2007. Forest genetics. 702 
p. CABI Publishing, Cambridge, Massachusetts, USA. 


