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RESEARCH

Interpolation of monthly precipitation amounts in mountainous catchments with 
sparse precipitation networks

Alexandra P. Jacquin1*, and Jaime C. Soto-Sandoval1

Most studies dealing with the interpolation of precipitation gauge data have focused in areas where the meteorological 
network is relatively dense, implying that it is still unknown what interpolation methods are more appropriate in the case 
of mountain catchments with scarce gauge data. This study evaluates the applicability of Kriging with External Drift 
(KED) and the Optimal Interpolation Method (OIM) for interpolation of monthly precipitation in these situations. Thiessen 
Polygons (TP) are used as benchmark. The study area corresponds to the upper subcatchment of Aconcagua River, Central 
Chile. Cross-validation experiments revealed that all these methods show similar performance in the lower zone of the study 
area, but OIM outperforms TP and KED at high elevations. Optimal Interpolation Method generally produces the smallest 
bias in the Andean zone of the study area, with mean errors whose absolute values are smaller than 9% of mean monthly 
precipitation. From April to September, the root mean squared errors of OIM are between 14% and 33% smaller than those 
of TP and KED in this zone. Although KED achieves a good agreement to mean monthly values at high elevations (mean 
errors smaller than 19% in absolute value), its performance is comparable to that of TP in terms of root mean squared errors. 
Long-term water balances did not provide evidence against the applicability of KED and OIM. Nevertheless, the results 
of the cross-validation experiments indicate that OIM is a better alternative than KED for the interpolation of monthly 
precipitation in the study area.
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INTRODUCTION

Precipitation information is essential for the evaluation 
of water resources availability, water resources planning 
and design of hydraulic works. However, it is often 
found that such information is either not available at the 
location or interest or that data is not representative of 
catchment wide conditions. Even in zones where long-
term precipitation records exist, it is possible that the 
meteorological network is too sparse or that its spatial 
distribution is such that precipitation data required is not 
directly available, implying that precipitation amounts 
must be estimated through interpolation. The issue of rain 
gauge interpolation is even more critical in catchments 
having a complex topography, where the spatial 
distribution of precipitation is likely to be subjected to 
orographic effects. In the case of catchments located in the 
Chilean Andes, in particular, the scarcity of precipitation 
information poses serious difficulties in the development 
of water resources studies. In spite of the improvements 
made in recent years, the meteorological network in 
the Chilean Andes is still insufficiently dense and large 

uncertainties persist with respect to the spatial distribution 
of precipitation. As pointed out by Falvey and Garreaud 
(2007), the fact that the snow cover dominates the higher 
Cordillera throughout winter is a major impediment for 
collecting long-term precipitation data, a problem that 
will probably remain unsolved in the near future. As 
a result, even though previous research has intended to 
quantify the variation of precipitation amounts at a large-
scale, confirming that precipitation fields are affected by 
elevation and that a spatial trend in long-term average 
precipitation exists (Garreaud and Rutlland, 1997; 
Falvey and Garreaud, 2007; Viale and Núñez, 2011), it 
is not possible to assertively describe this variability at 
a local scale. The choice of an interpolation method that 
allows a reliable estimation of these orography influenced 
precipitation fields in such poor information scenario 
is not trivial. In these cases, traditional precipitation 
interpolation methods utilized in engineering hydrology 
(e.g. Thiessen Polygons) are most probably unable to 
provide reliable estimations of precipitation amounts at 
different elevations.
	 Methods available for interpolation of precipitation 
gauge data include, for example, Thiessen Polygons, 
Classical Polynomial Interpolation, Inverse Distance 
Weighting, Multiquadric Functions fitting, Optimal 
Interpolation Method, and Kriging techniques (Sen, 
2009). Studies have been conducted on long-term mean 
monthly and annual precipitation data (Goovaerts, 2000; 
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Subyani, 2004; Diodato and Ceccarelli, 2005; Feki et 
al., 2012), annual and monthly data (Chen et al., 2002; 
Ruelland et al., 2008), daily data (Haberlandt and Kite, 
1998; Chang et al., 2005; Buytaert et al., 2006; Ahrens, 
2006; Ruelland et al., 2008; Skaugen and Andersen, 
2010), and also data from individual storms (Amani and 
Lebel, 1997; Syed et al., 2003; Buytaert et al., 2006). This 
research has revealed that the choice of an appropriate 
interpolation method depends on the time step used in 
the analysis, the density of the precipitation network, the 
precipitation regime and the catchment’s geomorphologic 
characteristics. Most of the examples found in the 
literature use data from catchments with no significant 
elevation changes, while there are very few existing 
studies dealing with catchments subjected to strong 
orographic effects. Nevertheless, the results of these 
studies have shown that precipitation interpolation in this 
case benefits from choosing a method that makes explicit 
consideration of the existence of a relationship between 
precipitation and elevation (Goovaerts, 2000; Diodato and 
Ceccarelli, 2005; Buytaert et al., 2006; Feki et al., 2012). 
Unfortunately, previous research has mainly focused in 
areas where the precipitation network is relatively dense 
and the issue of what precipitation interpolation methods 
is more appropriate remains unresolved in the case of 
mountain catchments with scarce gauge data.
	 This study is concerned with the evaluation of the 
applicability of Kriging with External Drift (KED) and 
the technique known as Optimal Interpolation Method 
(OIM) for the estimation of monthly precipitation 
amounts in mountainous catchments with sparse 
precipitation networks. The methods KED and OIM are 
both able to account for the existence of a relationship 
between precipitation and elevation, but they differ in 
the manner in that this information is incorporated in 
the modeling process. In the case of KED, the modeler 
must make a prior assumption on the nature of the 
analytical expression between the long-term expectation 
of precipitation and elevation, but it is not necessary 
that this function is explicitly specified. By contrast, the 
application of OIM requires the explicit estimation of the 
long-term mean expectation and the standard deviation of 
precipitation at the location where interpolations are to be 
performed. Regression functions relating long-term mean 
precipitation and elevation, and sample standard deviation 
and elevation, can be used for this purpose. The choice of 
regression function types depends on the characteristics of 
these relationships, as revealed by field data. Precipitation 
estimates obtained with the Thiessen Polygons (TP) 
method, unable to explicitly account for the existence 
of a relationship between precipitation and elevation, 
are used as a benchmark. The study area corresponds 
to the upper subcatchment of Aconcagua River, located 
in the Andes of Central Chile, a mountainous zone with 
elevation ranging from 959 to 5930 m a.s.l. Given the 
strong elevation changes that exist in the study area, it is 

an appropriate location for testing the ability of KED and 
OIM to perform the interpolation of monthly precipitation 
in mountainous catchments. 

MATERIALS AND METHODS

Study area and data
The study area corresponds to the upper subcatchment 
of Aconcagua River (32°36’ and 33°11’ S, 69°59’ and 
70°32’ W), in the Andes of Central Chile. The catchments 
of Aconcagua River at Chacabuquito and Juncal River at 
Juncal fluviometric station are used as case studies (Figure 
1). Aconcagua River at Chacabuquito is a snowmelt 
dominated mountainous catchment with a surface of 
2110 km2, with elevation ranging from 950 m a.s.l. at the 
catchment outlet to 5930 m a.s.l. in the higher Cordillera. 
Juncal River is a catchment located between 2200 and 
5930 m a.s.l, having an area of 235 km2. Most of the upper 
Aconcagua’s catchment is not inhabited and economic 
activity is limited to mining, but melting water that the 
catchment provides during the summer months is essential 
for the development of agricultural activity and the supply 
of drinking water to the population downstream Aconcagua 
River. Monthly data from nine precipitation stations in 
the period April 1965 to March 2001 are chosen (Table 
1). Five of these precipitation stations (numbered 1 to 5 in 
Table 1) are located in the valley immediately downstream 
Chacabuquito fluviometric station. Four precipitation 
stations (numbered 6 to 9 in Table 1) are located in the 
Andes Mountains, actually within Aconcagua River at 

Figure 1. Catchment case study. Elevation information derived from 
ASTER GDEM Version 1 (METI/NASA, 2009). ASTER GDEM is a 
product of METI and NASA.
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Chacabuquito catchment area, with elevations ranging 
between 1100 and 2765 m a.s.l. None of them is located 
within Juncal River catchment. Although this information 
is probably insufficient to confidently perform catchment 
wide interpolations of precipitation fields in the higher 
Aconcagua, it is still relevant to assess to what extent 
precipitation estimates obtained with different methods 
are at least credible, bearing in mind that more gauge data 
are not available and that this poor information scenario 
is not unlikely to occur in water resources studies in the 
Chilean Andes. 
	 Table 1 also shows the long-term mean and the sample 
standard deviation of annual precipitation at each station 
during the period of analysis. These values indicate a clear 
relationship between annual precipitation and elevation 
that becomes more evident above 1000 m a.s.l. In fact, 
Spearman’s rank correlation coefficient between annual 
precipitation and elevation for the whole data set during 
the period of analysis equals 0.57. A similar conclusion 
can be derived from Table 2, which shows the long-term 
mean and standard deviation of monthly precipitation for 
the groups of stations 1 to 5 and for the group of stations 
6 to 9. Throughout the hydrological year, long-term mean 
monthly values corresponding to the group of stations 1 to 
5, located in the valley, are lower than those corresponding 

to the group of stations 6 to 9, located in the Andes. In 
addition to this, Table 2 shows that precipitation in the 
study area is highly seasonal. It concentrates between 
April and September, while precipitation amounts during 
the rest of the year are quite low. Falvey and Garreaud 
(2007) note that this seasonality in precipitation amounts 
is due to the dominance of the South Pacific Anticyclone 
during spring-summer, inhibiting the arrival of frontal 
systems, which is followed by a northwards shift of 
this high pressure centre during winter that favors the 
occurrence of precipitation events. Some storms due to 
convective activity are also observed between December 
and February in the higher Cordillera (Garreaud and 
Rutlland, 1997).

Thiessen Polygons
The TP method uses precipitation amounts at the closest 
measuring station as estimations of precipitation P at 
the point of interest x→0. This is the most computationally 
inexpensive of all methods applied in this study, but it 
has the great disadvantage of being unable to explicitly 
account for the existence of a relationship between 
precipitation and elevation. 

Kriging with External Drift
Studies dealing with the interpolation of precipitation 
amounts have shown that although these relatively 
complex methods do not always result in the best point 
estimates, the application of a Kriging method that is 
adequate to the problem at hand can produce robust 
interpolations of gauge data time series (Haberlandt 
and Kite, 1998; Ruelland et al., 2008). In Kriging 
methods, spatial distribution of precipitation is seen 
as a regionalized variable, that is, a variable that varies 
spatially in a structured and organized manner at a global 
scale, but which suffers erratic local variations (Émery, 
2001). At a given time step, the precipitation field is a 
realization of a random function P that simultaneously 
assigns a precipitation value P(x→) to every point x→ in the 
horizontal plane. The variogram of P(x→) is defined as:
		

[1]

which is assumed to depend only on the distance vector 
d
→

ij = x→i – x→j and not on the location of the points x→i, x→j. 
In this study, it is assumed that variograms of monthly 
precipitation are affected by anisotropies such that the 
variogram ordinates depend on the effective distance 
between x→i and x→j, defined as: 
		  [2]

where (x,y) represent the horizontal coordinates and z 
represents the elevation of terrain point x→, and s (0 < s < 1) 
is a factor of vertical importance. A scale factor λ = 10 
is introduced in order to transform vertical distances into 
a scale that is analogous to that of horizontal distances 
between data points.

γ(d
→

ij) =     VAR[P(x→i) – P(x→j)]1
2

dij =   (1 – s) {(xi – xj)2 + (yi – yj)2} + s · λ2 · (zi – zj)2 

mm 

Table 2. Long-term mean and sample standard deviation of monthly 
precipitation.

Apr 	   9.8	   30.0	 14.9	   46.4
May	 32.3	   80.0	 33.2	   70.5
June	 57.2	 139.7	 70.2	 165.5
July	 63.3	 144.2	 78.6	 181.6
Aug	 35.6	   80.3	 41.5	   98.5
Sep	 16.6	   46.0	 19.9	   54.0
Oct	   7.7	   22.0	 11.3	   27.5
Nov	   4.5	   14.0	 10.5	   24.7
Dec	   0.9	     5.8	   3.1	   14.1
Jan	   0.7	     5.4	   2.0	   12.5
Feb	   0.7	     3.9	   3.1	     8.8
Mar	   2.2	     5.7	   4.5	     9.5
1Statistics for the period April 1965-March 2001 (sample size of 36 yr).

Month Valley
Mean1

Andes Valley
Standard deviation1

Andes

Table 1. Precipitation stations, location and long-term statistics of annual 
precipitation.

1	 San Felipe	 DGA	 32.75	 70.73	 640	 215.1	 141.8
2	 Curimón	 DMC	 32.79	 70.69	 712	 219.4	 148.8
3	 CalleLarga	 DMC	 32.86	 70.63	 780	 228.7	 145.5
4	 Los Andes	 DGA	 32.84	 70.60	 820	 264.6	 163.1
5	 San Esteban	 DMC	 32.80	 70.58	 832	 229.9	 143.2
6	 Vilcuya	 DGA	 32.86	 70.47	 1100	 354.5	 199.2
7	 Riecillos	 DGA	 32.93	 70.36	 1290	 549.0	 334.9
8	 Saladillo	 DMC	 32.94	 70.28	 1580	 560.2	 364.9
9	 Lagunitas	 Codelco	 33.08	 70.25	 2765	 843.9	 422.6
MAP: Mean annual precipitation; SDAP: Standard deviation of annual 
precipitation; DGA: Dirección General de Aguas; DMC: Dirección 
Meteorológica de Chile.
1Statistics for the period April 1965-March 2001 (sample size of 36 yr).

ID Station Elevation MAP1

mm °S °W m a.s.l.
Owner Latitude Longitude SDAP1
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	 In most kriging applications (Haberlandt and Kite, 
1998; Goovaerts, 2000; Subyani, 2004; Ruelland et al., 
2008; Feki et al., 2012), the ordinates of the experimental 
variogram are estimated according to the relationship:
		  [3]

where N(d) represents the number of pairs of data points 
that are located at a distance d. This approach is not 
appropriate for the inference of variograms in the study 
area for two reasons. Firstly, the precipitation network 
is so sparse that the number of pairs of data points with 
similar distances reduces to one in most cases. Secondly, 
it can be shown that the fact that the expectation of 
precipitation m(x→) varies space-wise causes that the 
estimation provided by Equation [3] is biased with respect 
to the true variogram of P(x→). An alternative strategy would 
be the calculation of the empirical variogram in terms of 
the residuals Y(x→) = P(x→) – m(x→), applying Equation [3] 
and substituting P(x→) by Y(x→). However, even though 
the experimental variogram of the residuals Y(x→) would 
provide an unbiased estimation of the variogram of P(x→), 
the experimental variogram of the estimated residuals Ŷ(x→) 
= P(x→) – m̂ (x→) underestimates the true variogram of P(x→). 
This underestimation arises from the fact that the true 
expectation m(x→) is unknown, implying that an estimation 
m̂ (x→) has to be used instead, and this bias would persist 
even if an optimal estimation procedure were used for the 
estimation of m̂ (x→) (Chilès and Delfiner, 1999; Émery, 
2001). In order to circumvent these problems, and at the 
same time account for the seasonality of precipitation in 
the study area, it is postulated that precipitation of each 
month of the year is a different regionalized variable, of 
which there is available a number of realizations that is 
equal to the number of years T in the data set. For each 
month of the year, the ordinates of the sample variogram 
are estimated by means of the relationship: 
		  [4]

which is essentially the same as that proposed by Tabios 
and Salas (1985), with the exception that the unbiased 
estimator of the variance VAR[(P(x→i) – P(x→j)] is used herein. 
The terms Pt(x→i) and Pt(x→j) represent the observations at 
time step t, while  and  represent the long-term mean of 
the corresponding month of the year, at locations x→i  and 
x→j, respectively. The final step in variographic analysis 
consists in fitting a theoretical model to the experimental 
variogram. A power model, with nugget effect where 
necessary, was considered satisfactory for modeling 
the variograms of monthly precipitation throughout the 
year. For example, Figure 2 shows the experimental 
variogram and the theoretical model fitted to April’s 
data. 
	 The KED method assumes that the external drift 
or large-scale trend of the long-term expectation of 
precipitation m(x→) is a function of a smoothly varying 
secondary variable. A logarithmic trend model for the 

expectation of precipitation of each month of the year, 
given by:
                            m(x→) = α0 + α1 ln(z(x→))   	             [5]
where z(x→) represents elevation at location x→, while 
α0 and α1 are constants, was found to provide an 
appropriate representation of the external drift of monthly 
precipitation in the study area, for all months of the year. 
Linear and parabolic relationships were also tested, but 
results indicate that a logarithmic relationship between the 
expectation of monthly precipitation and elevation is the 
most appropriate external drift model for the application 
of KED to the interpolation of monthly precipitation in 
the study area. Finally, precipitation at a given point of 
interest x→0 is estimated according to:
		  [6]

where the coefficients λi are obtained from the system 
of linear equations that results from the conditions of 
unbiasedness and minimal variance of the estimation 
(Émery, 2001).

Optimal Interpolation Method
Previous studies on interpolation of gauge data have 
applied the OIM to climatological precipitation records 
(Sen, 2009), large-scale monthly and daily data sets (Chen 
et al., 2002; Xie et al., 2007), and data from precipitation 
events (Creutin and Obled, 1982). It has been observed 
that this statistical method is able to provide credible 
large-scale interpolations of precipitation fields. Using 
the expectation of precipitation m(x→0) of the corresponding 
month of the year as an initial guess throughout the period 
of analysis, precipitation at a given time step can be 
estimated by means of the relationship:  
		

[7]

where σ(x→i) and σ(x→0) represent the standard deviation of 
precipitation at station x→i and at location x→0, respectively. 
The interpolation weights Wi are obtained from the system 
of linear equations:
		

[8]

γ*(d) =                 [P(x→i + d
→

) – P(x→i)]21
2N (d) ∑

N (d)

i=1

P*(x→0) =    λiP(x→i)∑
n

i=1

Wi ρij = ρ0j, J = 1 ... n∑
n

i=1

Figure 2. Experimental and theoretical variogram of monthly 
precipitation in April.

P*(x→0) = m(x→0) +    Wi                      σ(x→0)P(x→i) – m(x→i)
σ(x→i)∑

n

i=1

γ*(dij) =                [(Pt(x→i) – P(x→i)) – (Pt(x→j) – P(x→j))]21
2(T– 1) ∑

t
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where ρij represents the correlation coefficient between 
stations x→i and x→j, and ρ0j corresponds to the correlation 
coefficient between station x→i and location x→0.
	 The application of OIM requires prior estimation of 
the expectation m(x→0), the standard deviation σ(x→0) and 
the correlation coefficients ρ0j at the point of interest x→0, 
where precipitation data is not available. For this purpose, 
a logarithmic relationship between long-term mean 
precipitation in each month of the year and elevation 
was fitted, according to Equation [5]. A logarithmic 
relationship between standard deviation and elevation is 
also used for the estimation of σ(x→0). For example, Figure 3 
presents the logarithmic curves fitted to data in the case of 
April’s monthly precipitation. The correlation coefficients 
ρ0j are estimated by fitting a negative-exponential model 
(Sen, 2009) to the spatial correlation data, as shown in 
Figure 4 for the case of April’s data.

Computational experiments
The goodness of fit of monthly precipitation estimates 
is first evaluated by means of leave-one-out type 
cross-validation experiments. Goodness of fit statistics 
is obtained using purposely-built computing code 
developed in MATLAB® R2011. Firstly, root mean 
squared errors (RMSE) and mean errors are calculated 
over all precipitation stations available, during the period 
of analysis April 1965 to March 2001. A limitation of 

cross-validation methods is that data must come from 
the same population, in order to obtain goodness of fit 
statistics that are reliable and unbiased. Time variability 
is not a serious concern herein, as preliminary analysis 
showed that the time series used in the experiments are 
not subjected to evident time trends and seasonality is 
dealt with by treating each month of the year separately. 
However, space variability poses difficulties, because the 
statistical properties of monthly precipitation are known 
to be affected by elevation. Accordingly, subsequent 
cross-validation experiments are conducted separately 
for the group of precipitation stations located in the 
valley immediately downstream Chacabuquito and for 
the group of stations located in the Andes. In this manner, 
the interpolation capability of each method is assessed in 
terms of its goodness of fit at each of these elevation 
zones. Orographic differences other than elevation are 
not considered for classifying the stations into groups. 
To start with, all of the stations whose data is used in 
the experiments are located in the windward side of 
the Andes Mountains. Other orographic differences are 
not considered either, because precipitation data in the 
Chilean Andes is so scarce that it is still unclear to what 
extent terrain characteristics such as slope, aspect and 
site exposure to prevailing winds may affect the local 
variability of precipitation in the study area.
	 Due to the limitations in the spatial extent of data, cross-
validation experiments described earlier only provide 
information about the plausibility of precipitation estimates 
below 3000 m a.s.l., where only about 64% of Aconcagua 
River at Chacabuquito catchment area is located. With the 
aim of assessing the plausibility of the catchment wide 
spatial distribution of precipitation estimates prescribed 
by these methods, long-term annual water balances are 
performed in both catchment case studies. Yearly values 
of long-term mean real areal precipitation (RAP) can be 
roughly evaluated from the relationship:
                               RAP = Q/A + ET	 [9]
where Q/A represents the long-term mean observed 
discharge per unit area at the catchment outlet’s 
and ET represents long-term average yearly actual 
evapotranspiration in the catchment. Equation [9] relies 
on the assumptions that long-term water accumulation 
is small compared to Q/A and ET, and that losses 
due to groundwater flow are unimportant, which are 
reasonable considering that the Andes rocky soils are 
rather impermeable and vegetation is scarce (Falvey and 
Garreaud, 2007). Data used for the calculation of Q/A in 
the case of Aconcagua River at Chacabuquito catchment 
covers the totality of the period of analysis, from April 
1965 until March 2001. However, data considered in the 
case of Juncal River catchment corresponds to the period 
April 1970 to March 2001, because discharge information 
at Juncal station is only available from April 1970. Long-
term average yearly actual evapotranspiration estimates 
from the 5 arc minutes resolution map by FAO (2009) 

Figure 3. Long-term mean and standard deviation of monthly 
precipitation in April.

Figure 4. Spatial correlation function of monthly precipitation in 
April.
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were used for the calculation of evapotranspiration 
losses. RAP values obtained with Equation [9] are 
compared with the long-term average yearly precipitation 
estimates provided by each method. For this purpose, 
precipitation estimates at each time step are calculated 
for a 500 m resolution grid, where the elevation of the 
grid nodes was derived from ASTER GDEM Version 1 
(METI/NASA, 2009). Yearly amounts of estimated areal 
precipitation (EAP), averaged during the period April 
1965-March 2001 in Aconcagua at Chacabuquito and 
during the period April 1970-March 2001 in Juncal River 
catchment, are subsequently calculated.

RESULTS AND DISCUSSION

Cross-validation experiments
Table 3 shows the root mean squared errors (RMSE) 
and the mean errors calculated considering all nine 
precipitation stations available. Positive and negative 
mean errors indicate overestimation and underestimation 
of precipitation amounts, respectively. In terms of this 
average goodness of fit statistics, it can be observed 
that, throughout the year, the OIM generally exhibits the 
best fit to the observations. In particular, the small mean 
errors obtained by the OIM are due to the good agreement 
between empirical mean monthly precipitation values 
and the logarithmic curves used for the estimation of 
expectation as a function of elevation (Figure 3). Table 3 
reveals that, considering the totality of the rain gauges, the 
interpolation methods TP and KED obtain similar RMSE. 
Nevertheless, the mean errors reported in Table 3 show 
that the KED method has a substantially smaller bias than 
TP, especially during the wet season April to September. 
As explained earlier in the Material and Methods section, 
these results must be taken with caution, as the space 
variability of the statistical properties of precipitation 
limits the validity of goodness of fit statistics calculated 
over all precipitation stations.
	 Cross-validation experiments conducted separately 

for the group of stations in the valley immediately 
downstream Chacabuquito fluviometric station and those 
located in the Andes provide information on the ability 
of the interpolation methods under scrutiny for producing 
monthly precipitation estimates at different elevation 
zones. Figures 5 and 6 show RMSE values for the 
group of stations located in the valley and for the group 
of stations located in the Andes, respectively. Figure 5 
reveals that the RMSE obtained by all methods are very 
similar in the case of the stations located in the valley, but 
Figure 6 shows that this situation changes in the case of 
the stations located in the Andes. Even though the KED 
method is able to account for the existence of an external 
drift in precipitation, its goodness of fit is comparable to 
that of the simpler TP method in terms of RMSE at high 
elevations. By contrast, Figure 6 shows that the monthly 
precipitation estimates provided by the OIM have a much 
better agreement than TP and KED with the gauge data 
available in the Andean region of the study area, especially 
during the wet season April to September. In this period, 
the RMSE obtained by the OIM are between 14 and 33% 
smaller than those of TP and KED in the Andes stations.
	 Figure 7 and Figure 8 show mean errors for the group of 
stations located in the valley and for the group of stations 
located in the Andes, respectively. Unlike the case of the 
RMSE, mean errors obtained by interpolation methods 
in the valley stations are clearly distinguishable. Figure 7 
reveals that TP generally overestimates mean precipitation 
in the valley stations; absolute values of these mean errors 

mm 

Table 3. Error statistics calculated considering all precipitation stations 
available.

Apr	 19.0	 20.8	 16.2	   -1.5	   0.7	 0.0
May	 33.5	 35.2	 27.4	   -3.5	   1.1	 0.1
June	 68.6	 73.9	 50.5	 -13.3	 -6.0	 0.0
July	 50.6	 59.8	 44.7	   -8.9	 -1.2	 0.3
Aug	 27.8	 29.0	 24.9	   -4.9	 -0.3	 0.1
Sep	 29.4	 27.0	 22.3	   -4.6	 -1.3	 0.0
Oct	 13.2	 12.1	 13.1	   -1.4	   0.5	 0.0
Nov	   8.1	   9.5	   7.3	   -0.4	   0.8	 0.0
Dec	   7.9	   7.9	   6.1	   -0.8	 -0.3	 0.2
Jan	   9.6	   9.7	   6.4	   -0.9	 -0.5	 0.4
Feb	   5.3	   4.2	   4.0	   -0.9	 -0.2	 0.2
Mar	   5.8	   5.2	   4.5	   -0.5	 -0.2	 0.1

TP: Thiessen Polygons; KED: Kriging with External Drift; OIM: Optimal 
Interpolation Method.

Month TP
Root mean squared error

OIMKED TP
Mean error

OIMKED

Figure 5. Root mean squared errors for the group of stations located 
in the valley.

Figure 6. Root mean squared errors for the group of stations located 
in the Andes.
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generally remain below 10% of mean monthly values 
reported in Table 2, but they reach 26% and 16% of mean 
monthly precipitation in February and March, respectively. 
Mean errors of the KED method in valley stations are 
also positive, but smaller and quite stable throughout the 
year. Most notably, these errors are smaller than 6% of 
the corresponding mean monthly precipitation amounts 
presented in Table 2. In this zone, OIM shows an erratic 
behavior, obtaining mean errors whose absolute values are 
comparable to those of TP in some months. The impact 
of the choice of interpolation method in the bias of the 
precipitation estimates is even greater at high elevations. 
As expected, the mean errors shown in Figure 8 reveal 
that the TP method notably underestimates mean monthly 
precipitation in the case of stations located in the Andes. 
Between April and September, absolute values of these 
mean errors vary between 6% and 44% of the respective 
mean monthly values reported in Table 2. These results 
show that TP is likely to produce large negative biases 
when used for the estimation of monthly precipitation 
in the Andean Mountains. The KED method provides a 
better estimate of mean monthly precipitation in this zone, 
with mean errors smaller than 19% in absolute value in 
all months. Finally, the application of the OIM generally 
results in the smallest bias in the case of the Andes stations, 
with mean errors whose absolute values are smaller than 
9% of mean monthly precipitation. 

Catchment wide interpolation of precipitation fields
Figure 9 shows long-term annual precipitation estimates 
averaged at different elevation zones in Aconcagua at 

Chacabuquito catchment. It can be observed that the 
annual precipitation obtained by the TP method, whose 
precipitation estimates at each time step are bounded 
above by the largest observation among the gauging 
stations available, reach 843 mm yr-1 in the higher 
elevation zones, which corresponds to annual precipitation 
at Lagunitas (Table 1), as expected. In addition to this, 
Figure 9 shows that the KED method and OIM provide 
similar estimations of long-term annual precipitation 
corresponding to different elevations. 
	 According to the information provided by FAO 
(2009), long-term average actual evapotranspiration is 
close to 311 mm yr-1 in Aconcagua River at Chacabuquito 
catchment and close to 325 mm yr-1 in Juncal River 
catchment. Considering that the mean discharge per unit 
area between April 1965 and March 2001 equals 500 mm 
yr-1 at Chacabuquito station, RAP over the catchment must 
have been close to 811 mm yr-1 in that period. Similarly, 
the mean discharge per unit area observed at Juncal 
station in the period April 1970 to March 2001 equals 808 
mm yr-1, implying that RAP in this catchment must have 
been close to 1133 mm yr-1.
	 Table 4 shows estimated annual precipitation (EAP) 
obtained using the interpolation methods applied in this 
study, in addition to the quotients between EAP and 
RAP, both for Aconcagua River at Chacabuquito and 
Juncal River catchment. These results show that TP 
largely underestimate yearly areal precipitation over both 
catchments, which is not surprising considering the cross-
validation results shown in Figure 8 and discussed earlier. 
The low ratios EAP/RAP shown in Table 4, and the fact 
that these quotients in the case of Juncal River catchment 

Table 4. Estimated annual precipitation of each method, and quotient 
between this estimation and real annual precipitation in the catchment 
case studies.

TP	 544	 0.67	 628	 0.55
KED	 844	 1.04	 988	 0.87
OIM	 876	 1.08	 998	 0.88

EAP: Estimated annual precipitation; RAP: Real annual precipitation; TP: Thiessen 
Polygons; KED: Kriging with External Drift; OIM: Optimal Interpolation Method.

Month EAP (mm)
Aconcagua at Chacabuquito

EAP/RAP
Juncal at Juncal

EAP/RAPEAP (mm)

Figure 7. Mean errors for the group of stations located in the valley.

Figure 8. Mean errors for the group of stations located in the Andes.

Figure 9. Average yearly precipitation estimates in different elevation 
zones of Aconcagua River at Chacabuquito catchment. 
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(55%) are much lower than those obtained in Aconcagua 
River at Chacabuquito catchment (67%), suggest that 
the performance of these methods rapidly deteriorates at 
higher elevations. By contrast, the methods KED and OIM 
are both able to provide realistic estimates of long-term 
yearly areal precipitation in these mountain catchments. 
The ratios EAP/RAP obtained by KED and OIM in 
Aconcagua River at Chacabuquito catchment are very 
close to unity, implying the estimation of EAP is almost 
unbiased. In the more challenging case of Juncal River 
catchment, these ratios decrease to about 90%. This is not 
a surprising result, considering that the precipitation data 
used for the derivation of EAP values does not include any 
gauge that is actually located inside this latter catchment. 

CONCLUSIONS

Cross-validation experiments revealed that the 
performance of all interpolation methods analyzed is 
similar in the case of the group of precipitation stations 
located in the valley zone of the study area. Considering that 
the external drift affecting precipitation in the study area 
becomes evident at higher elevations, it is not surprising 
that even the simplistic Thiessen Polygons (TP) method 
is able to provide reasonable estimations of monthly 
precipitation in the valley. By contrast, the Optimal 
Interpolation Method (OIM) notably outperforms TP and 
Kriging with External Drift (KED) for the interpolation of 
monthly precipitation in the case of the group of stations 
located in the Andes, producing precipitation estimates 
generally subjected to the smallest bias and showing 
a better agreement to gauge data in terms of root mean 
squared errors. Although KED achieves a much better 
agreement to mean monthly values than TP at high 
elevations, its performance is close to that of the simpler 
method in terms of root mean squared errors. Simplified 
long-term annual water balances did not provide evidence 
against the applicability of KED or the OIM. However, 
considering the performance of these methods in the 
cross-validation experiments, it can be concluded that the 
OIM is a more suitable than KED for the interpolation of 
monthly precipitation amounts in the study area.
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