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ABSTRACT

Fusarium head blight (FHB) compromises the processing suitability and nutritional value of grain, and it causes significant 
crop losses. The aim of the study was to develop models for the classification of wheat (Triticum aestivum L.) kernels 
infected with fungi and healthy wheat kernels. Wheat kernels were classified with the use of Decision Tree, Rule-based, 
Bayes, Lazy, Meta and Function classifiers, as well as multilayer perceptron (MLP), radial basis function (RBF) and 
probabilistic neural networks (PNN). Twenty textures were selected from RGB, Lab, XYZ colour spaces each, for every 
wheat variety and each kernel side. Accuracy ranged from 82% for the dorsal side of kernels for Naive Bayes and IBk 
classifiers to 100% for the ventral side of kernels for IBk, FLDA and Naive Bayes classifiers. Classification accuracy 
was highest in the model based on texture attributes from Lab colour space. The final model of 20 attributes from Lab 
colour space was applied to a set of kernels from all wheat varieties, analysed on the ventral side. The accuracy of the 
classification model ranged from 94% to 98%, depending on the applied classifier. The models developed with the use of 
neural networks were characterised by overall classification accuracy of above 99% for MLP networks, above 96% for 
RBF networks and above 97% for PNN. The developed models indicate that analyses should be performed on the ventral 
side of kernels based on textures from Lab colour space.
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INTRODUCTION

Wheat (Triticum aestivum L.) grain is a major global commodity which is used in the food processing industry to produce 
bread, biscuits, cakes, pasta, breakfast cereals, alcoholic beverages and animal feed (Dal-Pastro et al., 2016; Schmidt et 
al., 2016). Fungal contamination of wheat grain, in particular infections caused by fungi of the genus Fusarium, poses a 
significant problem. Fusarium head blight (FHB) compromises the processing suitability and nutritional value of grain, and 
it causes significant crop losses (Schmidt et al., 2016). Fusarium fungi also produce mycotoxins such as trichothecenes and 
zearalenone. Group B trichothecenes include deoxynivalenol (DON) and its acetylated derivatives (3AcDON, 15AcDON), 
nivalenol (NIV) and fusarenon X (FUS-X) (Kulik et al., 2015; Suproniene et al., 2016). Grain containing toxic fungal 
metabolites (mycotoxins) poses a health hazard (Schmidt et al., 2016). Therefore, infected grain has to be identified before 
it is processed into food and feed (Barbedo et al., 2015). Infected kernels are most commonly identified with the use 
of molecular, microscopic and microbial culture methods which are expensive, time consuming, laborious and require 
mycological expertise (Polder et al., 2005; Chelladurai et al., 2010; Levasseur-Garcia, 2012). Fungi can be identified 
based on the presence of mycotoxins in infected material. Mycotoxins are determined with the use of several methods and 
devices, including gas-chromatography (GC), high-performance liquid chromatography (HPLC), liquid chromatography-
mass spectrometry (LC/MS), enzyme-linked immunosorbent assay (ELISA), lateral flow devices (LFD), fluorescence 
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polarization immunoassay (FPIA), infrared (IR) spectroscopy, electrical, optical and acoustic biosensors, and molecularly 
imprinted polymers (MIP). However, these methods require expensive equipment, complex sample preparation procedures 
and a relatively long time of analysis. Selected methods are characterized by low selectivity. Analytical methods for the 
identification of mycotoxins in grain should involve an extraction step, a clean-up step to eliminate interferences from the 
extract and to concentrate the analyte, and a final identification step (Pascale, 2009; Meneely et al., 2011). Also, the presence 
of fungi can be identified based on determination of the ergosterol content in grain (Ropelewska, 2018a). However, rapid, 
non-destructive and reliable methods for detecting infected kernels are required.
	 Digital image analyses based on colour descriptors were conducted by Jirsa and Polisenska (2011) to distinguish 
healthy and infected kernels and by Fox et al. (2004) to identify the discoloration of kernels caused by fungal sporodochia. 
There is a general scarcity of published information about texture attributes in the classification of infected and healthy 
wheat kernels. The grain of various cereal species and varieties was discriminated in digital image analyses based on their 
texture attributes. Majumdar and Jayas (2000) carried out a discriminant analysis based on 25 textural features, including 
10 features from the grey level co-occurrence matrix (GLCM), 12 features from the grey level run length matrix (GLRM), 
and three grey level features. Textures extracted from colour channels R (red), G (green), B (blue) were applied. In a 
classification model based on 15 most significant textural features, mean training accuracy was 92.9% and mean testing 
accuracy was 92.0%. These results accounted for 87.0%, 95.7%, 100.0%, 100.0% and 81.8% training accuracies and 
85.2%, 98.2%, 100.0%, 100.0% and 76.3% testing accuracies for Canada Western Red Spring (CWRS) wheat, Canada 
Western Amber Durum (CWAD) wheat, barley, oats and rye, respectively. Zapotoczny (2011; 2014) identified wheat grain 
varieties based on textural features from R, G, B, Y, S, U, and V channels. The analysed wheat varieties were classified 
with 100% accuracy based on the textural attributes of single kernels and bulk grain. Guevara-Hernandez and Gomez-Gil 
(2011) determined 99 features in single kernels, including 21 morphological, 6 optical and 72 textural features. Wheat 
grain was evaluated with the use of models based on individual features and a combination of morphological, optical and 
textural features. The highest discrimination accuracy (above 99%) was found in a model composed of features from all 
three groups. The average GLCM texture shifted by 90° was the most important feature for classification. 
	 The aim of the study was to develop models for the classification of wheat kernels infected with fungi and healthy 
wheat kernels. Textures with the highest discriminative power were selected, and the side of the kernel (ventral or dorsal) 
which provided more accurate results was determined. The results were used to develop a model which was characterised 
by high classification accuracy and was independent of the analysed wheat varieties.

MATERIALS AND METHODS

The study was performed on the grain of four wheat varieties. Grain samples of 5 kg each were obtained from farms 
and grain suppliers in various regions of Poland. Kernels infected with fungi of the genus Fusarium (pink, chalky white, 
shrivelled) and healthy kernels were selected from bulk samples. 

Image analysis
Images were acquired with the use of the Epson Perfection 4490 Photo flatbed scanner (Seiko Epson Corp., 
Suwa, Nagano, Japan) and the SilverFast Ai Studio Epson v6.6.1r6 scanning application (LaserSoft Imaging, 
Kiel, Germany). Kernels were measured with a calliper. Individual kernels (infected and healthy) were scanned 
on both sides (ventral and dorsal) at a resolution of 500 × 700 pixels, 1200 dpi, tiff format. A total of 200 images, 
including 100 images of infected kernels and 100 images of healthy kernels, were acquired for each variety and 
each side. The images were analysed using MaZda v. 4.6 software (Łódź University of Technology, Institute of 
Electronics, Łódź, Poland) which supports image processing and quantitative analyses of textural features based on 
histogram, gradient, run-length matrix, co-occurrence matrix, an autoregressive model and Haar wavelet transform 
(Szczypinski et al., 2009). Textural features were computed from colour channels R, G, B, U, V, H, S, V, X, Y, Z, 
L, a, b and analyses were performed separately for colour models. 

Statistical analysis
Wheat kernels were classified as infected or healthy with the use of classifiers and neural networks. Firstly, the classification 
was performed with the use of the WEKA 3.9 application (Machine Learning Group, University of Waikato, Hamilton, 
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New Zealand) (Bouckaert et al., 2016). Wheat kernels were classified with the use of Decision Tree, Rule-based, Bayes, 
Lazy, Meta and Function classifiers by 10-fold cross-validation. Attributes were selected to reduce the number of variables 
and shorten analysis time. The Ranker method with the OneR attribute evaluator was chosen. The selected method was 
characterised by the highest classification accuracy. In the first step, from the total set of attributes (textural features), 20 
features with the highest discriminative power were selected from each colour model for each kernel side (ventral and 
dorsal) and each wheat variety. Twenty texture attributes were selected for discriminant analysis because the number of 
infected (100) and healthy (100) kernels of each wheat variety (a total of 200 kernels) was at least ten times greater than 
the number of attributes (20 textures). Kernels were classified separately in each colour model. Three colour models, 
which provided the highest classification accuracies were selected for further analyses. In the second stage of research, 
kernels were classified with the use of models containing textures from all colour spaces. For this purpose, seven textural 
features with the highest discriminative power were selected from the previously chosen group of 20 textures from each 
of the three selected colour spaces and combined into a single classification model, separately for each wheat variety. 
The models contained 21 attributes. In the third stage of the experiment, model incorporating the selected 21 textures (7 
from RGB, Lab and XYZ colour models each) was developed for all wheat varieties. In the fourth stage, textures with 
the highest classification accuracy, chosen in the first stage of the experiment, were used to develop a model for testing a 
single set of kernels from all wheat varieties. This procedure was adopted to build a model independent of wheat variety. 
In the following stage, the model developed in the WEKA application was used to classify infected and healthy wheat 
kernels with the use of neural networks. The analyses based on multilayer perceptron (MLP) and radial basis function 
(RBF) neural networks were carried out in Statistica 12.0 software (StatSoft Inc., Tulsa, Oklahoma, USA; 2013). The 
analysed set was divided into three data sets in two ways: 70% for learning, 15% for testing and 15% for validation, as 
well as 80% for learning, 10% for testing and 10% for validation. The MATLAB 8.3 R2014a application (MathWorks, 
Inc., Natick, Massachusetts, USA) was used for analyses based on a probabilistic neural network (PNN). The set was 
divided into two data sets: 80% for learning and 20% for testing.

RESULTS 

The classification models based on 20 variables with the highest discriminative power for RGB, Lab and XYZ colour 
models were built to discriminate healthy wheat kernels and kernels infected with fungi. Kernels from each wheat 
variety were analysed separately on ventral and dorsal sides. Classification accuracies ranged from 82% to 100% 
(Table 1). In analyses of the dorsal side of variety 1 kernels, Naive Bayes and IBk classifiers were characterised by 

Table 1. Classification accuracy of infected and healthy wheat kernels based on 20 textures selected from each colour 
model, for kernels of each wheat variety, positioned on the ventral and dorsal side.

RGB	 trees.J48	 92	 86	 95	 92	 95	 94	 98	 97
	 rules.JRip	 93	 84	 95	 94	 98	 96	 96	 98
	 bayes.Naive Bayes	 89	 84	 95	 95	 94	 93	 98	 97
	 lazy.IBk	 93	 88	 91	 94	 96	 96	 100	 99
	 meta.Multi Class Classifier	 98	 92	 93	 93	 97	 97	 99	 99
	 functions.FLDA	 97	 93	 96	 95	 98	 98	 100	 99
Lab	 trees.J48	 96	 91	 98	 96	 97	 96	 99	 99
	 rules.JRip	 93	 92	 96	 93	 97	 96	 99	 99
	 bayes.Naive Bayes	 95	 87	 96	 96	 98	 97	 100	 99
	 lazy.IBk	 96	 92	 93	 96	 100	 97	 100	 99
	 meta.Multi Class Classifier	 93	 94	 89	 93	 99	 97	 99	 98
	 functions.FLDA	 98	 93	 96	 96	 98	 98	 100	 99
XYZ	 trees.J48	 88	 86	 95	 94	 94	 95	 97	 97
	 rules.JRip	 88	 83	 95	 93	 94	 94	 96	 95
	 bayes.Naive Bayes	 85	 82	 95	 95	 94	 86	 97	 97
	 lazy.IBk	 87	 82	 92	 94	 92	 92	 97	 98
	 meta.Multi Class Classifier	 97	 89	 95	 95	 97	 96	 96	 98
	 functions.FLDA	 98	 88	 95	 95	 97	 97	 99	 98
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lower classification accuracy (82%). Classification accuracy reached 100% when the ventral side of kernels of two 
varieties (3 and 4) was analysed with IBk, FLDA and Naive Bayes classifiers. The above implies that all infected 
kernels were correctly assigned to the “infected” class and all healthy kernels to the “healthy” class. In dorsal side 
analyses, none of the tested varieties or classifiers produced 100% accuracy. The obtained results could indicate that 
visible symptoms of fungal infection differ on each side of the kernel. Classification accuracy was higher on the ventral 
than on the dorsal side. Symptoms of fungal infection were more visible on the ventral side of kernels. The crease on 
wheat kernels could facilitate the growth and development of fungi. Wheat variety also influenced the discrimination 
of infected and healthy kernels. Classification accuracy was highest for variety 4 (96%-100% for the ventral side and 
95%-99% for the dorsal side) and lowest for variety 1 (85%-98% for the ventral side and 82%-94% for the dorsal 
side). The observed differences could be attributed to variations in the physical properties of kernels of different wheat 
varieties, agronomic methods and climatic conditions. In this study, grain samples were collected from various Polish 
regions to account for local differences. The colour model influenced the discrimination of infected and healthy kernels 
(Table 1). The model based on textures from Lab colour space delivered the most satisfactory results. Classification 
accuracy was 87%-100%, and in most cases, the results were much higher than in RGB and XYZ models. The XYZ 
model was characterised by the lowest classification accuracy of 82%-99%. Classification accuracy did not reach 100% 
in models based on textures from XYZ colour space.
	 In the following stage of the study, kernels were classified with the use of models containing 21 attributes, including 
seven textures from each colour space (RGB, Lab, XYZ). In previous analyses, classification accuracies were higher for 
the ventral side (Table 1), therefore, only this side was considered in this stage. Kernels of each variety were classified 
separately. The obtained results are presented in Table 2. Classification accuracy ranged from 93% to 100%. The accuracy 
of classification into infected and healthy kernels was influenced by variety. Classification accuracy was highest in variety 
4 at 99%-100% and lowest in variety 1 at 93%-98%. Naive Bayes, IBk and Multi Class classifiers discriminated kernels 
with 100% accuracy.
	 Attempts were also made to develop a model that accurately discriminates infected and healthy kernels independently 
of variety. Initially, the model was built based on 21 textures (7 from RGB, Lab and XYZ colour models each) for kernels 
of each variety positioned on the ventral side. Classification accuracy ranged from 91% for Naive Bayes to 96% for IBk, 
Multi Class and FLDA classifiers (Table 3). 

Table 2. Classification accuracy of infected and healthy wheat kernels based on the selected 21 
textures (seven from RGB, Lab and XYZ colour models) for ventral side of each varieties.

trees.J48	 94	 96	 97	 99
rules.JRip	 94	 96	 96	 99
bayes.Naive Bayes	 93	 96	 99	 100
lazy.IBk	 94	 95	 99	 100
meta.Multi Class Classifier	 98	 98	 98	 100
functions.FLDA	 96	 96	 98	 99

%

Variety 1 Variety 2 Variety 3 Variety 4Classifiers

	 %
trees.J48	 95
rules.JRip	 95
bayes.Naive Bayes	 91
lazy.IBk	 96
meta.Multi Class Classifier	 96
functions.FLDA	 96

Table 3. Classification accuracy of infected and healthy wheat 
kernels based on 21 textures (seven from RGB, Lab and XYZ 
colour models each) for kernels from a set containing all varieties, 
positioned on the ventral side.

Classifier All varieties
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	 Attempts were also made to increase the accuracy of the classification model. Only textures from colour space which 
produced the highest classification accuracy were used in the model (Table 1). The model included 20 attributes from 
Lab colour space, and it was applied to a set containing all varieties. Individual kernels were analysed on the ventral side 
where symptoms of fungal infection were more visible. Classification accuracy was high at 94%-98%, depending on the 
applied classifier (Table 4). Classifier IBk produced the most satisfactory results. The scatterplots of selected textures 
are presented in Figure 1. The textural features of infected and healthy kernels differ considerably in value. The values 
of attribute LHPerc90 (Figure 1A) were high in infected kernels, and the values of bHMean (Figure 1B) were high in 
healthy kernels.
	 The model (Table 4) was applied to discriminate kernels with the use of neural networks. The model contained 
20 textures from Lab colour space, for kernels positioned on the ventral side and a set consisting of all varieties. The 
results of classification with the use of MLP, RBF neural networks are presented in Table 5. The highest accuracies were 
obtained when the data set was divided as follows: 70% for learning, 15% for testing and 15% for validation. The overall 
classification accuracy achieved with MLP networks was 99.64%, where infected kernels were correctly classified in 
99.63% cases, and healthy kernels in 99.65% cases. When the data set was divided into a learning set (80%), a testing set 
(10%) and a validation set (10%), the overall classification accuracy was highest for MLP (99.53%) and RBF (96.25%) 
networks. When the data set was divided into a learning set (80%) and a testing set (20%), the overall classification 
accuracy for a probabilistic neural network (PNN) was 97.22%. Infected kernels were correctly discriminated in 94.44% 
cases, and healthy kernels – in 100% cases.

Figure 1. Scatterplots of attributes LHPerc90 (A) and bHMean (B) in infected (red) and healthy kernels (blue).

	 %
trees.J48	 97
rules.JRip	 96
bayes.Naive Bayes	 94
lazy.IBk	 98
meta.Multi Class Classifier	 97
functions.FLDA	 97

Table 4. Classification accuracy of infected and healthy wheat 
kernels based on 20 textures from the Lab colour model for 
kernels from a set containing all varieties, positioned on the 
ventral side.

Classifier All varieties
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DISCUSSION

The obtained results have expanded our knowledge about the applicability of image analysis for the identification of 
fungal infection of cereal grain. In the available literature, there are several reports on the evaluation of Fusarium-
infected kernels with the use of physical parameters. Jirsa and Polisenska (2011) used image analysis based on geometric 
parameters, such as: length, width, area and perimeter, as well as colour descriptors: R (Red), G (Green), B (Blue) and 
H (Hue) of infected and healthy wheat kernels. The authors obtained a high accuracy reaching 85% in infected and 
healthy wheat kernels classified based on model containing colour descriptors. However, they reported that geometric 
parameters were not specific to distinguish Fusarium-infected and healthy kernels. Menesatti et al. (2009) applied elliptic 
Fourier analysis to extract shape information and discriminate the wheat kernels in three classes: healthy, shrivelled and 
chalky. The total accuracy of classification of these classes for kernels infected with Fusarium culmorum was 68.4% and 
Fusarium graminearum was 56.9%.
	 According to literature data, discrimination models based on textural features allowed to increase the classification 
accuracy of infected and healthy cereal kernels. Ropelewska and Zapotoczny (2018) reported the accuracy of 76%-
100% for classification models of infected and healthy wheat kernels including the textures from flatbed scanner and 
hyperspectral images. For images acquired with a hyperspectral imaging system at different wavelengths, classification 
accuracy of 76%-98% was observed. In the case of images acquired with a flatbed scanner, the selected textures from 
colour channels: L* (Lightness), R (Red) and Y (Luminance) were considered. The high classification accuracy of 95%-
100% was found. The results obtained in present paper supplemented this knowledge, by considering a greater number of 
another varieties of wheat and using another classification model based on textures from RGB, Lab or XYZ colour spaces. 
Furthermore, in addition to models built with the use of discriminative classifiers, the models using neural networks 
were developed. The usefulness of image analysis based on texture attributes for the identification of fungal infection 
in kernels, which are demonstrated in present paper for wheat, was also reported by Ropelewska (2018b) for barley. 
Ropelewska (2018b) observed high accuracy of classification up to 100%. Similar to the results of present studies for 
wheat, Ropelewska (2018b) found that for barley the most satisfactory results were observed for models based on textures 
from Lab colour space and the lowest accuracies were for textures selected from XYZ model. The obtained results are the 
basis for further research on infection of cereal kernels. It can be used for investigation of the quantity of fungal DNA in 
kernels based on texture features. 

                                   Data set division: 70% for learning, 15% for testing, and 15% for validation
MLP 20-12-2	 Correct (%)	 99.63	 99.65	 99.64
	 Incorrect (%)	 0.37	 0.35	 0.36
MLP 20-10-2	 Correct (%)	 99.26	 99.30	 99.29
	 Incorrect (%)	 0.74	 0.69	 0.71
MLP 20-13-2	 Correct (%)	 99.26	 98.96	 99.11
	 Incorrect (%)	 0.74	 1.04	 0.89

                                   Data set division: 80% for learning, 10% for testing, and 10% for validation
MLP 20-11-2	 Correct (%)	 99.36	 99.70	 99.53
	 Incorrect (%)	 0.64	 0.30	 0.47
MLP 20-18-2	 Correct (%)	 98.07	 98.18	 98.13
	 Incorrect (%)	 1.93	 1.82	 1.87
RBF 20-21-2	 Correct (%)	 99.68	 93.01	 96.25
	 Incorrect (%)	 0.32	 6.99	 3.75

Classification 
accuracy

Table 5. Classification accuracy based on 20 textures from the Lab colour model for kernels 
from a set containing all varieties, positioned on the ventral side, determined with the use of 
neural networks.

Experimental group

Infected Healthy TotalNeural network
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CONCLUSIONS

The results of this study indicate that the visible symptoms of fungal infection differ on each side of a kernel. Fungal 
symptoms were more visible on the ventral than the dorsal side. The presence of a crease on the ventral side of wheat 
kernels could facilitate the growth and development of fungi. Wheat variety also influenced the discrimination of infected 
and healthy kernels. The observed differences could be attributed to variations in the physical properties of kernels 
from different wheat varieties, agronomic methods and climatic conditions. Classification accuracy was determined by 
the group of textures included in the model. Textures from Lab colour space produced the most satisfactory results. A 
model which was characterised by high classification accuracy and was independent of the analysed wheat varieties was 
developed based on selected textures from Lab space for kernels positioned on the ventral side. Classification accuracy 
was high when both classifiers and neural networks were used. The results can be used in further studies investigating 
the quantity of fungal DNA in kernels based on texture features. The developed models indicate that analyses should be 
performed on the ventral side of kernels based on textures from Lab colour space. 
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