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ABSTRACT

Sweet potato (Ipomoea batatas [L.] Lam.) is an important food crop that is cultivated and consumed worldwide, and 
its nutritional value makes it especially important in developing countries. However, sweet potato plants produced 
using conventional vegetative propagation can be prone to several diseases, thereby hindering crop yield. Therefore, 
micropropagation techniques are useful for producing higher quality plant material. The aim of the present study was 
to determine the optimal medium formulation for the axillary shoot multiplication of single-node ‘Abees’ explants. The 
influences of cytokinins (6-benzyladenine [BA], kinetin, thidiazuron, and zeatin), gibberellic acid, phenylacetic acid, 
indole-3-butyric acid, silver nitrate, and oxalic acid, culture duration, and medium salt strength were investigated. Optimal 
proliferation was observed when shoots were cultured on half-strength MS medium that was supplemented with 2 mg L-1 
BA and 100 mg L-1 oxalic acid for 2 wk, followed by culture on half-strength MS medium without plant growth regulators 
for 4 wk. In this medium, the greatest number of shoots (3.1) and total number of nodes (16.1) per explant were observed. 
All (100%) of the regenerated shoots were rooted and acclimatized, with a survival rate of 96% when transferred to ex 
vitro conditions and no morphological abnormalities.
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INTRODUCTION

Sweet potato (Ipomoea batatas [L.] Lam; Convolvulaceae) is among the world’s most important and versatile food crops 
(Bovell-Benjamin, 2007; Iese et al., 2018), ranking seventh among the most important food crops (Mukherjee et al., 2012) 
and third among the most important tuber and root food crops, after potato and cassava (FAOSTAT, 2016). Sweet potato 
is considered an important staple food and has been consumed and cultivated for more than 5000 yr (Bovell-Benjamin, 
2007; Loebenstein, 2009). For these reasons, sweet potato is attractive to agriculturist, ecologists, and economists that are 
interested in developing sustainable food production systems in the tropics (Bovell-Benjamin, 2007; Loebenstein, 2009; 
Mukherjee et al., 2012; Iese et al., 2018). 
 Because sweet potato is highly heterozygous, seeds are used only for breeding and the development of new cultivars 
and breeding lines (Gaba and Singer, 2009). Sweet potato is vegetatively propagated through storage roots, shoot tips, and 
stem cuttings (Gaba and Singer, 2009). However, plantlets produced using vegetative methods are sometimes infected 
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with disease. In contrast, plantlets produced using micropropagation techniques are generally pathogen-free. Accordingly, 
plants produced using micropropagation are generally preferred over those produced using vegetative methods. 
Additionally, micropropagation methods have several advantages over conventional propagation. Micropropagation has 
been used for commercial scale propagation of many horticultural crops for production of quality planting material. Due 
to the presence of predetermined shoot meristems, nodal explants have become popular in sweet potato micropropagation. 
For example, nodal explants were used for the micropropagation of ‘Carmen Rubin’ and ‘White Triumph’ (Dolinski and 
Olek, 2013), ‘Gaozi No. 1’ (Gong et al., 2005), ‘Naruto Kintoki’ (Teixeira da Silva et al., 2007), ‘KSP 36’ and ‘KEMB 36’ 
(Mvuria and Ombori, 2014), and 30 accessions from the northern region of Rio de Janeiro, Brazil (Vettorazzi et al., 2017). 
However, little is known about the micropropagation of ‘Abees’ sweet potato. Studies on this cultivar have generally 
focused on indirect regeneration via somatic embryogenesis (Aboulila, 2016) and adventitious shoot proliferation (El Far 
et al., 2009; Ali et al., 2017), although, in regards to direct regeneration, El Far (2007) investigated the effects of plant-
growth regulators and sucrose concentrations on axillary shoot proliferation but overall low regeneration efficiency was 
reported. The Egyptian sweet potato I. batatas ‘Abees’ is a popular local cultivar that is characterized by its red peel and 
orange flesh (Marzouk et al., 2011) and that is considered a rich source of pro-vitamin A carotenoids (Teow et al., 2007; 
Marzouk et al., 2011). The efficacy of micropropagation techniques depends on a variety of factors, including genotype, 
stock plant physiology, season, basal medium composition, plant-growth regulators, light source (type and intensity), 
photoperiod, gelling agents, and C sources (George et al., 2008). The aim of the present study was to determine the effects 
of cytokinins (6-benzyladenine, kinetin, thidiazuron, and zeatin), gibberellic acid, phenylacetic acid, indole-3-butyric 
acid, silver nitrate, and oxalic acid, culture duration, and medium salt strength on the axillary shoot multiplication of 
single-node Ipomoea batatas ‘Abees’ explants.

MATERIALS AND METHODS

Explant collection, disinfection, and culture establishment
Twigs (5-6 cm) of red-peeled Egyptian sweet potato (Ipomoea batatas [L.] Lam.) ‘Abees’ were excised from the actively 
growing shoots of stock plants grown and maintained at a local farm in Kafr El Sheikh Governorate, Egypt. The twigs 
were cleaned under running tap water for 10 min and rinsed three times using sterile distilled water. Then, twigs were 
disinfected by submerging them in 70% (v/v) ethanol for 20 s and then transferring them to a 0.1% (w/v) mercuric 
chloride solution that contained 2-3 drops of Tween 20 for 5 min. Finally, twigs were rinsed three more times using sterile 
distilled water, and 0.5 to 1 cm twig segments (i.e., nodal explants) were cultured in glass test tubes (24 × 200 mm) that 
contained 15 mL basal Murashige-Skoog (MS) medium (Murashige and Skoog, 1962), which had been supplemented 
with 3% (w/v) sucrose and 0.8% (w/v) agar-agar plugged with plastic caps. In vitro regenerated shoots (Figure 1A) were 
cut into nodal segments (1 cm, with one axillary bud), cultured in Magenta GA-7 culture vessels (77 ×77× 97 mm; Sigma 
Chemical, St. Louis, Missouri, USA) that contained semisolid MS medium without plant growth regulators (PGRs). The 
regenerated shoots were then subcultured on the same medium every 4 wk until enough plant material was available to 
conduct the experiments.

Axillary shoot multiplication
Nodal segments (0.5-1.0 cm, with one axillary bud) from the in vitro regenerated shoots (four explants per culture 
vessel) were inoculated to Magenta culture vessels that contained 50 mL MS medium that had been supplemented 
with different concentrations and combinations of PGRs and additives. For the first experiment, the MS medium was 
supplemented with different concentrations of various cytokinins, which included 6-benzyladenine (BA; 0-4 mg L-1), 
kinetin (Kin; 0-7 mg L-1), thidiazuron (TDZ; 0-1.5 mg L-1), and zeatin (0-1.5 mg L-1). For the second experiment, different 
combinations of BA (2 mg L-1), Kin (5 mg L-1), TDZ (1 mg L-1), and zeatin (0.1 mg L-1) were used, and for the third 
experiment, gibberellic acid (GA3; 0-1.0 mg L-1), phenylacetic acid (PAA; 0-4 mg L-1), indole-3-butyric acid (IBA; 0-1 mg 
L-1), silver nitrate (AgNO3; 0-4.5 mg L-1), and oxalic acid (C2H2O4; 0-300 mg L-1) were combined with BA (2 mg L-1). For 
the fourth experiment, MS salt concentration was varied (half- or full-strength), and the explants were exposed to PGRs 
for different lengths of time (1, 2, 3, or 6 wk). The salts used for preparing the MS medium and PGRs were obtained from 
BDH Chemicals, Ltd. (Poole, UK).
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In vitro culture conditions
The MS medium was gelled using 0.8% (w/v) agar-agar, and the pH of the medium was adjusted to 5.8 before autoclaving 
(121 °C and 1.2 kg cm-2 for 15 min). All cultures were incubated for 6 wk at 25 ± 2 °C under cool-white fluorescent lights 
that provided a 16:8 h photoperiod of 35 μmol m-2 s-1 photosynthetic photon flux density (PPFD).

In vitro rooting and acclimatization
Proliferated axillary shoots were transferred to half-strength MS medium without PGRs to allow rooting. After 3 wk, 
rooted plantlets (5-7 cm, with 4-5 roots) were gently removed from the medium, rinsed using tap water, briefly dipped 
(for few seconds) in a fungicide solution (0.5 g L-1 Aromil-Plus 50 WP; Mobedco-Vet, Amman, Jordan), and finally 
transplanted into small plastic pots (10 cm diameter) that contained a 1:1 mixture of peat moss and sand. The potted 
plants were incubated at 25 ± 2 °C, 50%-60% RH, and 100 μmol m-2 s-1 PPFD (16:8 h photoperiod under white fluorescent 
lamps) for 20 d in a growth chamber (Model KBWF 720; Binder, Tuttlingen, Germany), with the pots being covered with 
transparent polyethylene for the first 10 d. The plantlets were regularly irrigated using a nutrient solution that contained 
half-strength MS basal salts, and plantlet survival was evaluated at 30 d after being transferred to the growth chamber.

Experimental design and data analysis
The experiments were set up using a completely randomized design, with four replicates per treatment. Shoot number, 
shoot height, node number, fresh weight, and percentage of explants forming shoots were recorded after 6 wk of 
culture. Data expressed as percentages were arcsine-transformed before analysis (Compton, 1994), and the effects of the 
treatments were assessed using ANOVA and Tukey’s range tests in SAS program (Version 6.12; SAS Institute, Cary, 
North Carolina, USA).

Figure 1. Micropropagation of Ipomoea batatas ‘Abees’: establishment of in vitro culture using node explant cultured on 
Murashige and Skoog’s (MS) medium without plant growth regulators (PGRs) after 2 wk in culture (A), axillary shoot 
proliferation on half strength MS medium containing 2.0 mg L-1 BA and 100 mg L-1 oxalic acid for 2 wk followed by 
culture on half strength MS medium without PGRs for 4 wk (B), in vitro rooting of proliferated axillary shoots on half 
strength MS medium without PGRs after 3 wk (C), and acclimatized plantlets after 30 d in acclimatization (D). 
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RESULTS AND DISCUSSION

Effects of cytokinins on axillary shoot multiplication
Among the cytokine-supplemented cultures, all but 5-7 mg L-1 Kin and TDZ cultures yielded 100% shoot regeneration 
(Table 1). There was nonsignificant difference (P ≥ 0.05) in the number of shoots per node for the control, TDZ (0-
1.5 mg L-1), zeatin (0-1.5 mg L-1), Kin (1, 3, and 7 mg L-1), and BA (0.5 and 2 mg L-1) treatments, although the maximum 
number of shoots observed in the 2 mg L-1 BA treatment (1.8 shoots per node) was significantly greater than the maximum 
number of shoots observed in the other treatments (P ≤ 0.05). However, the maximum shoot length observed on the 
control medium, additionally, shoots obtained from the control and 2 mg L-1 BA supplemented medium had nonsignificant 
difference in fresh weight (P ≤ 0.05). Therefore, the results indicate that cytokinin type significantly affects regeneration 
potential (P ≤ 0.01), as well as the multiplication (P ≤ 0.01), length (P ≤ 0.001), and fresh weight (P ≤ 0.001) of regenerated 
shoots (Table 1). Nevertheless, cytokinin concentration failed to exhibit any significant effect on shoot multiplication. 
 The explants cultured on TDZ-supplemented medium formed callus at the basal parts. The low shoot regeneration 
observed in these cultures could have resulted in using high concentrations of TDZ (Dewir et al., 2018). The superiority 
of BA over TDZ has been reported previously for the axillary shoot multiplication of sweet potato ‘cv. 11’ and ‘cv. 44’, 
in which no multiple shoots were observed on TDZ-supplemented medium (Mohamed et al., 2007). For the axillary shoot 
multiplication of sweet potato ‘Esprit’, ‘Lady Rosseta’, and ‘Meridian’, BA produced better results than Kin (Bhuiyan, 
2013). The superior effects of BA over other cytokinins on shoot regeneration have also been reported for other members 
of the Convolvulaceae, i.e. Merrimia quinquefolia (Kher et al., 2015). None of the tested cytokinin combinations 
significantly improved shoot regeneration over that of the control (P ≥ 0.05, Table 2). It is notable, however, that the 
media supplemented with 2 mg L-1 BA, 5 mg L-1 Kn, and 1 mg L-1 TDZ produced significantly more shoots (2.6 per 
node, P ≤ 0.05) than the control, albeit with very low shoot regeneration frequency (56%), shoot length (1.2 cm), and 
fresh weight (0.27 g). It is well-known that in vitro growth and morphogenesis are regulated by exogenously applied 
PGRs and the balance of endogenous hormones. Cytokinin-cytokinin combinations have been reported to ameliorate 

                   mg L-1 %   Nr node-1 cm g explant-1

MS basal medium               (control) 100a 1.0b 6.9a 0.92a
BA  0.5 100a 1.0b 3.9c 0.75ab
  1.0 100a 1.6ab 2.3def 0.63bcd
  2.0 100a 1.8a 2.1def 0.95a
  4.0 100a 1.7ab 1.8efg 0.36ef
Kinetin 1.0 100a 1.4b 4.9b 0.65bcd
  3.0 100a 1.3b 2.1defg 0.43def
  5.0 92b 1.7ab 1.1gh 0.37ef
  7.0 92b 1.2b 1.6fgh 0.45cdef
TDZ  0.1 42d 1.0b 1.9efg 0.29ef
  0.5 42d 1.0b 1.2gh 0.36ef
  1.0 50c 1.2b 0.7h 0.42def
  1.5 50c 1.2b 0.6h 0.56bcde
Zeatin 0.1 100a 1.3b 3.0d 0.52bcdef
  0.5 100a 1.0b 2.3def 0.74ab
  1.0 100a 1.0b 2.6def 0.70abc
  1.5 100a 1.2b 2.7de 0.72ab

Table 1. Effect of cytokinins on shoot multiplication and growth of Ipomoea batatas ‘Abees’ using a single node explant 
after 6 wk in culture.

Concentration 
of cytokinin Shoots

Shoot 
regeneration

Fresh 
weight

Significance
Cytokinin type (CT) ** ** *** ***
Cytokinin concentration (CC) * NS *** NS
CT × CC * NS *** ***

Values followed by the same letter in the same column are nonsignificantly different according to Tukey’s test 
(P ≤ 0.05). 
*, **, ***Significant at the 0.05, 0.01 and 0.001 probability levels, respectively. 
NS: Nonsignificant; BA: 6-benzyladenine; TDZ: thidiazuron.

Shoot 
lengthCytokinins
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organogenesis in several plant species. Combinations of BA (0.5-1.5 mg L-1) and Kin (0.5-1.5 mg L-1) have been reported 
to significantly enhance callus induction and adventitious shoot organogenesis in Solanum lycopersicum (Ali et al., 2012), 
and a combination of BA (0.5 mg L-1) and Kin (2 mg L-1) was reported to increase adventitious shoot organogenesis from 
callus cultures in ‘Kullufo’ and ‘Tulla’ sweet potato (Mengs et al., 2018). 

Effects of other additives on axillary shoot multiplication
The type and concentration of the other additives also had a significant impact on shoot number and shoot length (Table 3; 
P ≤ 0.001) but did not affect fresh weight (P ≥ 0.05). Several of the additives, namely GA3, PAA, IBA, and silver nitrate, 
promoted moderate shoot multiplication but had nonsignificant effect on shoot multiplication or fresh weight (Table 3). A 
previous study (El Far, 2007) found that neither IAA, NAA, nor GA3 enhanced shoot proliferation in ‘Abees’ sweet potato 
but that GA3 enhanced shoot elongation. However, the combination of high concentration GA3 (10 mg L-1) and 2 mg L-1 BA 
improved adventitious shoot regeneration in ‘Brondal’ sweet potato to a mean of three shoots per meristem, with three nodes 
per shoot (Masekesa et al., 2016). Although silver nitrate has been used widely as an additive for in vitro propagation (Kumar 
et al., 2009), it failed to improve shoot multiplication in ‘Abees’ sweet potato, and although the combination of 2 mg L-1 
BA and 100 mg L-1 oxalic acid significantly increased shoot number, maximum shoot length was observed on the medium 
that was supplemented with oxalic acid (200 mg L-1) alone. Oxalic acid is an antioxidant (Kayashima, 2002) that plays an 
important role in Ca regulation, plant defense, and detoxification (Franceschi and Nakata, 2005). However, few studies have 
examined the effects of oxalic acid on axillary shoot multiplication under in vitro conditions. Aika (2010) reported that oxalic 
acid (100 mg L-1) enhanced shoot multiplication in Musa sp. ‘Grand Naine’ (7.8 shoots per explant), when compared to the 
control (2.1 shoots per explant). However, the stimulatory role of oxalic acid in shoot proliferation has yet to be determined. 

Effects of salt strength and exposure duration on axillary shoot multiplication
Neither salt strength nor the interaction of salt strength and exposure duration significantly affected axillary shoot 
multiplication (P ≥ 0.05). However, exposure duration significantly affected the number of shoots per node (P ≤ 0.05), 
number of nodes per shoot (P ≤ 0.001), main shoot length (P ≤ 0.001), and total fresh weight (P ≤ 0.05). Shoot regeneration 
was greater when nodal explants were cultured for 2 wk and then transferred to PGR-free medium than when continuously 
cultured on multiplication medium for longer durations (Table 4). Nodal explants that were cultured on half-strength MS 
medium with BA (2.0 mg L-1) and oxalic acid (100 mg L-1) for 1-3 wk and then transferred to half-strength, PGR-free MS 
medium exhibited both root formation and shoot multiplication simultaneously (Figure 1B). The strategy of transferring 
the explants to a secondary PGR-free medium has also been reported to enhance shoot proliferation and elongation likely 
due to reducing or minimizing the carry-over effects of PGRs, thereby improving plant growth and circumventing growth 
abnormalities (Dewir et al., 2018). However, a similar two-step regeneration strategy, in which ‘Abees’ sweet potato 

                                         %             Nr node-1 cm g explant-1

 2.0 - - - 100a 1.9bc 2.3b 0.84a
 2.0 5.0 - - 75c 1.3cd 1.0cd 0.31cd
 2.0 - 1.0 - 75c 2.3ab 1.2cd 0.40bcd
 2.0 - - 0.1 69c 1.5cd 1.4c 0.28cd
  5.0 - - 92b 1.7bcd 1.1cd 0.37bcd
  5.0 1.0 - 56d 1.6cd 1.5c 0.34cd
  5.0 - 0.1 88b 1.3cd 2.7ab 0.33cd
  - 1.0 - 50d 1.2d 0.7d 0.42bc
  - 1.0 - 94b 1.2d 1.2cd 0.37bcd
  - - 0.1 100a 1.3cd 2.9a 0.52b
  - - 0.1 75c 1.5cd 1.2cd 0.24d
 2.0 5.0 1.0 - 56d 2.6a 1.2cd 0.27cd
 2.0 5.0 1.0 0.1 100a 1.9bc 2.3b 0.84a

Table 2. Effect of different cytokinin-cytokinin combinations on shoot multiplication and growth of Ipomoea batatas ‘Abees’ 
using a single node explant after 6 wk in culture.

Cytokinins

BA
Shoot 

regeneration Kinetin ShootsTDZ Zeatin
Fresh 
weight

Shoot 
length

mg L-1

Values followed by the same letter in the same column are nonsignificantly different according to Tukey’s test (P ≤ 0.05). 
BA: 6-benzyladenine; TDZ: thidiazuron.
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explants were cultured on medium with GA3 (0.5 mg L-1) for 1 wk and then transferred to PGR-free medium with sucrose 
(60 g L-1) for 5 wk to promote shoot formation and elongation, respectively, yielded a low regeneration rate of one shoot 
per nodal explant (El Far, 2007). 
 Although the regeneration capacity of nodal sweet potato explants varies according to cultivar and medium composition, 
the species produces relatively few axillary shoots, when compared to explants from other plant species. For example, 
80%-100% of ‘cv. 11’ and ‘cv. 44’ sweet potato explants only formed single shoots when cultured with BA (1 mg L-1; 
Mohamed et al., 2007). Similarly, most ‘Abees’ explants only formed single shoots (0.5 mg L-1 GA3; El Far, 2007), 

                                      Weeks             Nr node-1     Nr explant-1         cm                g explant-1

Full strength 1 2.3ab 14.5b 6.9a 1.40ab
 2 2.5ab 13.7b 5.9b 1.32ab
 3 2.3ab 13.1c 6.3a 1.63a
 6 2.7ab 7.8d 3.1d 1.12b
Half strength 1 2.6ab 15.1a 6.7a 1.18b
 2 3.1a 16.1a 6.0b 1.17b
 3 2.1b 12.6c 6.1b 1.47ab
 6  1.9b 7.1d 5.4c 1.29ab

Table 4. Effect of salt strength and exposure duration on shoot multiplication and growth of Ipomoea batatas ‘Abees’ 
using a single node explant after 6 wk in culture.

Culture period Nodes

Significance
Salt strength (A) NS NS NS NS
Exposure duration (B) * *** *** *
A × B NS NS NS NS

1All cultures supplemented with 2.0 mg L-1 BA and 100 mg L-1 oxalic acid.
Values followed by the same letter in the same column are nonsignificantly different according to 
Tukey’s test (P ≤ 0.05). 
*, **, ***Significant at the 0.05, 0.01 and 0.001 probability levels, respectively. NS: Nonsignificant.

Shoot length
Salt strength of Murashige 
and Skoog medium1 Fresh weightShoots

                                           mg L-1                         Nr node-1                  cm                               g explant-1

Control  1.9cd 2.1ab 0.81a
GA3 0.1 2.2bc 1.2cdef 0.26de
 0.5 2.0cd 0.6efg 0.22de
 1.0 2.0cd 0.7defg 0.26de
PAA 0.1 1.6def 0.8defg 0.24de
 2.0 1.9cd 1.6bc 0.52b
 4.0 1.3efg 1.4cd 0.40c
IBA 0.1 1.8cd 1.3cdef 0.42c
 0.5 1.0g 0.5g 0.32cd
 1.0 1.0g 1.2cdefg 0.31cd
AgNO3 1.5 1.9cd 2.1ab 0.24de
 3.0 1.7cde 0.9defg 0.21de
 4.5 1.2fg 0.6fg 0.18e
Oxalic acid 100 3.1a 2.1ab 0.53b
 200 2.6b 2.4a 0.62b
 300 1.8cd 1.3cde 0.60b

Table 3. Effect of 6-benzyladenine (BA) in combination with additives on shoot multiplication and growth of Ipomoea 
batatas ‘Abees’ using a single node explant after 6 wk in culture

Concentration Shoots

Significance
Additive type (AT) *** *** ***
Additive concentrations (AC) *** ** NS
AT × AC *** *** ***

Control treatment: 2.0 mg L-1 BA without any additives; all other treatments were supplemented with 2.0 mg L-1 BA. 
Values followed by the same letter in the same column are nonsignificantly different according to 
Tukey’s test (P ≤ 0.05). 
*, **, ***Significant at the 0.05, 0.01 and 0.001 probability levels, respectively. 
NS: Nonsignificant; GA3: gibberelic acid; PAA: phenylacetic acid; IBA: indole-3-butyric acid; AgNO3: silver nitrate.

Shoot lengthAdditives Fresh weight
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whereas most ‘Carmen Rubin’ and ‘White Triumph’ explants only formed four shoots over two multiplication cycles 
(1 mg L-1 Kin + 1 mg L-1 GA3; Dolinski and Olek, 2013), and most ‘Esprit’, ‘Lady Rosseta’, and ‘Meridian’ explants 
formed six to seven shoots (1 mg L-1 BA + 0.5-1.0 mg L-1 GA3; Bhuiyan, 2013). 
 Because plant species and cultivars differ in salt requirements during axillary shoot multiplication, proper media 
formulation is imperative when working with diverse cultivar collections (Akin et al., 2018). Varying medium salt strength 
significantly influence shoot multiplication and growth. However, because neither shoot multiplication nor growth was 
affected by reducing salt strength in the present study, salt strength can be reduced in ‘Abees’ axillary shoot multiplication 
to reduce production costs. 

In vitro rooting and acclimatization
Rooting and acclimatization of in vitro raised shoots is a crucial step in the micropropagation of any plant species. In the 
present study, the proliferated ‘Abees’ shoots were easily rooted in half-strength MS medium (100%) and had produced 
3-5 roots after only 3 wk, thereby demonstrating that the addition of auxins is unnecessary (Figure 1C). In contrast, 
previous studies reported that in vitro-propagated shoots of ‘Kullufo’ and ‘Tulla’ sweet potato did not root on auxin-free 
MS medium and that supplementation with IBA (0.25 mg L-1) was required (Mengs et al., 2018). Furthermore, even though 
shoots of ‘Beletech’, ‘Awass-83’, and ‘Belela’ sweet potato have been observed to root in auxin-free MS medium, the 
observed root regeneration was lower than that observed in auxin-enriched media (Alula et al., 2018). Meanwhile, previous 
reports of ‘Abees’ sweet potato reported that both axillary microshoots (El Far, 2007) and adventitious microshoots (Ali 
et al., 2017) rooted easily in MS medium without PGRs within 4-6 wk. In the present study, reducing MS basal salts to 
half-strength stimulated early root initiation (within 10 d), which resulted in 100% rooting at 3 wk. Using less MS salts for 
in vitro rooting improves cost effectiveness but has also been reported to improve rooting in several plant species (Dewir 
et al., 2016). The plantlets acclimatized with a 96% survival rate (Figure 1D). 

CONCLUSIONS

The present study investigated the optimal medium formulation for axillary shoot multiplication in Ipomoea batatas 
‘Abees’. Both cytokinin type and concentration, addition of oxalic acid, medium salt strength, and duration of exposure to 
plant growth regulators (PGRs) significantly influenced axillary shoot multiplication. Half-strength MS medium that was 
supplemented with 6-benzyladenine (BA) (2.0 mg L-1) and oxalic acid (100 mg L-1) yielded the greatest shoot proliferation. 
In this medium, 16 nodes were obtained from single-node explants after 6 wk. In addition, all the regenerated shoots 
rooted in half-strength MS medium and acclimatized without morphological abnormalities or pathological symptoms.
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