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ABSTRACT

Infestation of Bemisia tabaci MEAM1 (Gennadius) causes significant phenotypic changes in a variety of plants. However, 
plants damaged by Trialeurodes vaporariorum (Westwood) show no similar changes. In this study, to explore the effects 
of MEAM1 infestation on tobacco growth and the mechanism underlying these effects, growth index, and photosynthesis 
of infested tobacco (Nicotiana tabacum L.), as well as content of hormones, including auxin, gibberellin, cytokinin, 
abscisic acid, methyl jasmonate, and ethylene were measured. The results demonstrated that infestation of MEAM1 
significantly inhibited tobacco growth and the inhibition effect varied with MEAM1 feeding densities, 50 MEAM1 per 
infested tobacco plant decreased plant height, internode length, and dry weight cm-2, and this inhibition peaked at 200 
MEAM1 per plant, which reduced by 52.17%, 43.83%, and 45.61% that of controls, respectively. Additionally, MEAM1 
infestation inhibited photosynthesis of tobacco, causing significant decrease in chlorophyll content, photosynthetic rate 
and stomatal conductance. However, the effects of T. vaporariorum infestation on tobacco were significantly lighter than 
that of MEAM1. Hormones assays indicated that infestation with 200 MEAM1 per plant for 30 d significantly affected 
hormones content, among which gibberellin content was specifically reduced compared with that of uninfested control 
plants and T. vaporariorum infested plants. Furthermore, exogenous application of 1 and 2 μM gibberellin alleviated the 
reduction in plant height mediated by MEAM1. Therefore, infestation of MEAM1 significantly inhibited tobacco growth 
and photosynthesis, and the reduction of gibberellin content may contribute to this inhibition.
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INTRODUCTION

In nature, plants suffer from various abiotic and biotic stresses. These stresses can affect all life processes of plants, 
change plant morphology, inhibit plant growth, and reduce crop yields (Alonso-Ramirez et al., 2009; Su et al., 2017). 
Herbivory is one of the crucial stresses affecting plants growth (De Bruyne et al., 2014). The effects of phloem-feeding 
insect infestation on host plants are more complicated, despite they only cause minor wounds (Stephens and Westoby, 
2015). These phloem-feeding insects may inhibit plant growth and reduce crop yields via consuming plant nutrients, 
reducing plant photosynthesis, and/or manipulating plant hormone interaction (Su et al., 2017).
	 Photosynthesis is an important physiological indicator of plant growth, and its intensity determines the production 
level of crops (Li et al., 2013; 2018). Studies have proved that herbivores feeding can impair the function of chloroplasts 
and stoma thereby affect photosynthesis (Cheng et al., 2018). For instance, when Tetranychus urticae feed on soybean 
(Glycine max L.), significant photosynthetic rate reduction is observed due to stomatal limitation (Bueno et al., 2009). 
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Aphid (Brevicoryne brassicae L.) feeding causes obviously decrease in chlorophyll index, photosynthetic rate and 
stomatal conductance of Brassica carinata, thus resulting in a significant reduction in crop growth and yield (Pandey et 
al., 2013; Su et al., 2017).
	 Plant hormones are crucial factors closely related to plant growth. Most stages of plant growth and development are 
affected by various hormones, including the major growth regulators, auxin, cytokinin (CK), and gibberellin (GA), and 
the defensive hormones, abscisic acid (ABA), jasmonic acid (JA), ethylene (ETH), and salicylic acid (SA) (Wolters and 
Jurgens 2009; De Bruyne et al., 2014). Recent studies indicate that pathogens and herbivores can impact plant growth 
through manipulating plant hormone signaling pathways (Zhang et al., 2015; 2017b). For instance, Fiorinia externa 
(Ferris) (Hemiptera: Diaspididae) infestation significantly increase JA and ABA content of East Asian hemlocks, causing 
severe yield loss (Schaeffer et al., 2018). Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) feeding can enhance JA 
content while suppressing the accumulation of GA, thus leading to a dwarf phenotype and increased resistance in affected 
rice plants (Li et al., 2015). Among these plant hormones, GAs is a series of tetracyclic diterpenoid hormones, which play 
important roles in many processes of plant growth and development, including cell expansion, seed germination, floral 
development, chlorophyll degradation and accumulation (Li et al., 2010). Recent researches have proved that GA is also 
involved in plant responses to abiotic and biotic stresses (Pusittigul et al., 2012; Kim et al., 2016). Cold and salt stresses 
usually inhibit GA signal in host plants, resulting in a reduction in seed germination rate and dwarfism (Alonso-Ramirez 
et al., 2009; Zhu et al., 2016). However, studies focus on the impact of herbivore attacks on growth-related hormones in 
hosts is rarely. 
	 Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) MEAM1 (Middle East-Asia Minor 1) and Trialeurodes 
vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are common sap-sucking pests, and important global agricultural 
pests (Zhang et al., 2015). As a worldwide invasion pest, MEAM1 causes serious agricultural losses (Ballina-Gomez et 
al., 2013; Costa et al., 2017). MEAM1 infestation causes various phenotypic changes, for instance, silverleaf whitefly 
infested squash (Cucurbita pepo L.) plants displays silverleaf symptoms (Masuda et al., 2016; Zhang et al., 2017a). 
Furthermore, MEAM1 infestation in tobacco and Arabidopsis induces defense response to the subsequent insects via 
activating SA signaling pathways (Xue et al., 2010; Zhang et al., 2013). However, it is not clear if T. vaporariorum 
feeding shows similar phenomenon. 
	 In this study, a whitefly-plant model was built by treating MEAM1 as the target insect and T. vaporariorum as the 
control insect. The plant growth inhibition effects, changes of photosynthetic indices and plant hormones contents mediated 
by MEAM1 and T. vaporariorum were compared using photosynthesis measurer, enzyme linked immunosorbent and 
exogenous spraying technique. The objective of this investigation was to answer the following questions: 1. Whether 
MEAM1 and T. vaporariorum infestation cause similar effect on growth and photosynthesis of tobacco plants. 2. Whether 
hormone contents variation is different after infestation of MEAM1 and T. vaporariorum. 3. Whether hormone is closely 
related to the inhibition effect. This study focused on the disparities between MEAM1 and T. vaporariorum on plant 
growth, which may help to elucidate possible underlying mechanisms of MEAM1 mediated host growth inhibition.

MATERIALS AND METHODS

Plant and insect materials
Tobacco (Nicotiana tabacum L.) ‘Xanthi-nc’ seeds used for the experiment were supplied by Tobacco Breeding 
Laboratory, Shandong Agricultural University, Tai’an, Shandong Province, China. Seeds were planted in nursery trays 
(50 cm × 25 cm) filled with perlite and vermiculite (2:1). At two-leaf development stage, seedlings were individually 
transplanted into pots (10 cm × 12 cm) containing nursery substrate. Plant was fertilized by fertilizer (100 g N L-1, 40 g 
P2O5 L-1, 70 g K2O L-1 + trace elements). Plants at the five-leaf development stage were used for experiments. 
	 Bemisia tabaci MEAM1 (Middle East-Asia Minor 1) strain was originally collected from cabbage plants, and identified 
based on the mitochondrial cytochrome oxidase I gene sequence. Trialeurodes vaporariorum strain was originally 
collected from tobacco plants. Prior to use in the study, the insects were maintained separately on tobacco in growth 
chambers (23 ± 2 ℃, 75 ± 5% RH, 10:14 h photoperiod) for more than 30 generations. 
	 All bioassay experiments were carried out in a growth chamber (23 ± 2 ℃, 75 ± 5% RH, 10:14 h photoperiod).



92CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 80(1) JANUARY-MARCH 2020

Whitefly pre-infestation
The whitefly pre-infection method was slightly modified with reference to Xue et al. (2010). Twelve five-leaf-stage 
tobacco plants were placed in a separate gauze-covered cage (60 cm × 60 cm × 60 cm, 80 mesh) with about 50 (± 5), 100 
(± 10), 200 (± 10) whitefly adults (1:1 = female:male, approximately) per plant, respectively. Tobacco plants without 
whitefly were placed in insect-proof screened cages as controls. All infection experiments were carried out in growth 
chambers (23 ± 2 ℃, 75 ± 5% RH, 10:14 h photoperiod). 

Determination of growth indexes
The measurement method of growth indexes is slightly modified with reference to Li et al. (2013).
	 After being infested with whitefly for 0, 10, 20 and 30 d, plant height, internode length was measured, and number of 
leaves was recorded. There were 12 replicates for each experiment.
	 After feeding of whitefly for 30 d, third-leaf (lower leaf), fifth-leaf (middle leaf), and seventh-leaf (upper leaf) were 
taken for measurements. Leaf area was measured using portable laser leaf area meter (AM350, ADC BioScientific, 
Hoddesdon, UK). Using a punch (1 cm in diameter) leaf discs were taken from the seventh-leaf (upper leaf) and then 
dried in oven at 80 °C for 24 h. Dry weight was recorded and dry weight cm-2 was calculated. There were 12 replicates 
for each experiment.

Determination of photosynthetic indexes 
After feeding of whitefly for 30 d, seventh-leaf (upper leaf) was chosen for measurement. According to the methods 
of Li et al. (2013), chlorophyll (a and b) content of leaves from infested and uninfested plants were measured using a 
spectrophotometer (Thermo Spectronic, Cambridge, UK). There were four replicates for each experiment.
	 After feeding of whitefly for 30 d, photosynthetic indexes were measured on seventh-leaf (upper leaf) from infested 
and uninfested tobacco plants using a portable photosynthesis system (Ciras-3, PP Systems, Amesbury, Massachusetts, 
USA). The measured photosynthesis indexes included: photosynthetic rate, transpiration rate, stomatal conductance, and 
internal CO2 concentration. The experiments were carried out in growth chamber (25 ℃, 80% RH, 350 μmol mol-1 CO2 
concentration, 800 μmol m-2 s-1 light intensity) from 10:00 to 11:00 h. There were 12 replicates for each experiment.

Quantification of phytohormones
After MEAM1 infested 30 d, seventh-leaf (upper leaf) were sampled. 
	 Ethylene content was determined using gas chromatography with a flame ionization detector (FID) and column 4 × 
2000 mm, GDX 502 (Shimadzu Corp., Kyoto, Japan). Fresh leaves (0.5 g) collected from each replicate were put into 
a tube containing 5 mL mixture of mercuric chloride and perchloric acid, the material was completely immersed in the 
reaction solution. After 20 h, it was transferred to a mortar for grinding, the homogenate was centrifuged for 10 min at 
5000 g at 4 °C; 1 mL supernatant was taken in a Waters sample vial (Waters Corporation, Milford, Massachusetts, USA). 
To this, 1 mL of 2 mL L-1 HCl was added, cap quickly tightened, and the mixture was vibrated on a mixer for 5 s, and then 
placed in a 30 °C water bath for 5 h. Then, 1 mL saturated sodium chloride solution was injected into the vial through the 
rubber cap with a syringe, and 1 mL gas sample was taken with another syringe to determine the ethylene content by gas 
chromatography. There were four replicates for each experiment.
	 Auxin, gibberellin, cytokinin, abscisic acid, and methyl jasmonate contents were determined using enzyme linked 
immunosorbent assay (ELISA). The antibodies for the ELISA test were supplied by the Institute of Plant Hormone 
(China Agricultural University, Beijing, China). In brief, 0.2 g fresh tobacco leaves were extracted for 24 h at 4 °C, and 
then purified by C18 Sep-Pak cartridges (Waters Corporation). Microtiter plates were coated with 50 μL samples and 
hormone antigen (0.25 μg mL-1). Then the coated plate was incubated at 37 °C for 45 min. Next, each well was added 
with 100 μL antibody (20 μg mL-1) and incubated for another 1 h at 37 °C. Finally, 100 μL color-developing solution 
containing 2 mg mL-1 o-phenylenediamine and 0.008% (v/v) H2O2 was added to each well, and the plate was incubated at 
37 °C for 15 min in the darkness, subsequently terminated using 50 μL 2 M H2SO4 per well. The absorbance was recorded 
at 490 nm. There were four replicates for each experiment.
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Chemical treatment and plant growth determination
After being infested with whitefly for 5, 15, and 25 d, the infested tobacco plants were sprayed with deionized water and 
0.5, 1.0 and 2.0 μM gibberellin, respectively. Tobacco plants without whitefly were sprayed with the same liquids as 
controls. The height of infested and uninfested tobacco was measured in each treatment after 30 d of MEAM1 infection. 
There were 12 replicates for each experiment.

Statistical analyses
Data were statistically analyzed using the software package SPSS 18.0 for Windows (IBM, Armonk, New York, USA). 
An ANOVA was performed to analyzing the data, and then Tukey’s multiple comparison tests was used to compare the 
differences among treatments with a significance level of 5% (P ≤ 0.05). 

RESULTS
Effects of MEAM1 and T. vaporariorum infestation on tobacco plant growth
Compared to the control and T. vaporariorum infested plants, MEAM1 infestation significantly inhibited tobacco growth. 
As low as 50 (± 5) MEAM1 per plant significantly inhibited the elongation of plant height, and with increasing infestation 
density, plant height was lower. At 200 (± 10) MEAM1 per plant infestation for 30 d, plant height decreased by 52.67% 
compared with the control plants. By contrast, 50 (± 5) and 100 (± 10) T. vaporariorum per plant did not affect plant 
height of tobacco, 200 (± 10) T. vaporariorum per plant for 30 d resulted in a slight decrease in plant height, which were 
16.62% lower than those of the control (Figure 1a). 

Figure 1. Effects of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum infestation on tobacco height (a), internode 
length (b), and number of leaves (b).

Nicotiana tabacum plants (n = 12) were infested by whiteflies for 0, 10, 20, and 30 d compared to uninfested plants. Same letters indicate 
nonsignificant difference (P > 0.05).
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	 As low as 50 (± 5) MEAM1 per plant significantly inhibited the elongation of internode length, and with increasing 
infestation density, internode length was lower. At 200 (± 10) MEAM1 per plant infestation for 30 d, internode length 
decreased by 44% compared with the control plants. By contrast, 50 (± 5) and 100 (± 10) T. vaporariorum per plant did 
not affect internode length of tobacco, whereas 200 (± 10) T. vaporariorum per plant for 30 d resulted in a slight decrease 
in plant height, which was 18.6% lower than those of the control (Figure 1b).
	 MEAM1 and T. vaporariorum feeding tobacco for 30 d both resulted in a decrease in the number of leaves by about 2 
leaves compared with controls, and there is nonsignificant difference between different density treatments (Figure 1c). 
	 MEAM1 infested tobacco exhibited significantly reduced expansion of lower and middle leaves. After 50 (± 5), 100 (± 
10), and 200 (± 10) MEAM1 per plant feeding for 30 d, the lower leaf area was reduced by 23.00%, 27.49%, and 31.02%, 
the middle leaf area was reduced by 27.79%, 21.40%, and 27.82% compared to that of the control plant, respectively. 
On the contrary, MEAM1 infested tobacco plants significantly increased the area of the upper leaves, and there was 
nonsignificant difference between different densities, which increased by 21.94%, 23.21%, and 25.27%, respectively. 
However, infestation of 50 (± 5) and 100 (± 10) T. vaporariorum per plant did not affect leaf size of tobacco plants, and 
infestation of 200 (± 10) T. vaporariorum per plant for 30 d only resulted in a slight decrease in lower leaf area, which 
was 10.61% lower than that of the control (Table 1).
	 Although MEAM1 infested tobacco resulted in the upper leaf size increasing, upper leaf dry weight cm-2 decreased 
by 14.9%, 23.68%, and 32.64%, at three feeding densities, respectively. Furthermore, T. vaporariorum did not cause 
significant changes in upper leaf dry weight cm-2 (Figure 2).

Effects of MEAM1 and T. vaporariorum infestation on tobacco chlorophyll content
The chlorophyll content of tobacco upper leaf infested with three densities of MEAM1 was decreased, being 52.63%, 
45.79%, and 49.47% lower than that of the control, respectively. In contrast, different densities of T. vaporariorum 
infestation did not lead to a significant decrease in chlorophyll content of tobacco upper leaf (Figure 3).

Figure 2. Effects of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum infestation on tobacco leaf dry weight.

Nicotiana tabacum plants (n = 12) were infested by whitefly for 30 d compared to uninfested plants. Pairing with the same letter indicates 
nonsignificant difference (P > 0.05).

Table 1. Effects of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum infestation on tobacco leaf area.

Whitefly

Bemisia tabaci MEAM1	 Upper leaf	 88.21 ± 3.05b	 107.56 ± 3.68a	 108.68 ± 6.27a	 110.50 ± 5.51a
	 Middle leaf	 104.08 ± 5.75a	 75.10 ± 4.09d	 81.80 ± 5.03c	 75.13 ± 3.66d
	 Lower leaf	 92.49 ± 2.13a	 71.22 ± 5.05b	 67.06 ± 3.06c	 64.47 ± 3.79c

Trialeurodes vaporariorum	 Upper leaf	 81.05 ± 3.11a	 85.75 ± 2.60a	 83.17 ± 2.92a	 82.58 ± 4.91a
	 Middle leaf	 106.18 ± 4.75a	 108.76 ± 6.31a	 107.93 ± 4.24a	 105.92 ± 4.43a
	 Lower leaf	 85.74 ± 3.75a	 84.14 ± 4.77a	 81.15 ± 3.63b	 81.12 ± 4.38b

Nicotiana tabacum individuals (n = 12) were infested by whitefly for 30 d compared with un-infested plants. Pairing with the same letter 
indicates nonsignificant difference (P > 0.05).

Leaf position
200 Whiteflies per 

plant
100 Whiteflies per 

plantt
50 Whiteflies per 

plant
0 Whiteflies per 

plant
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Effects of MEAM1 and T. vaporariorum infestation on tobacco plant photosynthesis
The photosynthetic rate of tobacco infested with MEAM1 was significantly decreased and continued to decrease with 
increasing density, being 64.93%, 77.27%, and 88.42% lower than that of the control, respectively. In contrast, different 
densities of T. vaporariorum infestation only led to a slight decrease in photosynthetic rate (Figure 4a). 

Figure 4. Effects of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum infestation on tobacco leaf photosynthetic rate 
(a), transpiration rate (b), stomatal conductance (c), and intercellular CO2 concentration (d).

Figure 3. Effects of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum infestation on tobacco leaf chlorophyll content.

Nicotiana tabacum plants (n = 12) were infested by whitefly for 30 d compared to uninfested plants. Pairing with the same letter indicates 
nonsignificant difference (P > 0.05). 

Nicotiana tabacum plants (n = 4) were infested by whitefly for 20 d compared to uninfested plants. Pairing with the same letter indicates 
nonsignificant difference (P > 0.05).
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	 The transpiration rate of tobacco infested with MEAM1 decreased significantly and continued to decline with increased 
feeding density, being 37.91%, 53.73%, and 69.55%, respectively. While different densities of T. vaporariorum infestation 
did not result in a significant reduction in transpiration rate of tobacco plants (Figure 4b).
	 The stomatal conductance of tobacco infested with MEAM1 decreased significantly and continued to decline with 
increased feeding density, being 27.23%, 50.68%, and 71.88%, respectively. While different densities of T. vaporariorum 
infestation did not result in a significant reduction in transpiration rate of tobacco plants (Figure 4c).
	 The intercellular CO2 concentration of tobacco infested with MEAM1 increased by 23.98%, 24.93%, and 51.20%, 
respectively. While different densities of T. vaporariorum infestation did not result in a significant reduction in transpiration 
rate of tobacco plants (Figure 4d).

Effects of MEAM1 and T. vaporariorum infestation on tobacco hormones contents
MEAM1 infestation of tobacco plants significantly affected the content of phytohormones (Figure 5). After being MEAM1 
infested for 30 d, GA, auxin, and methyl jasmonate (MeJA) contents were reduced by 40.37%, 35.24%, and 20.78%, 
and CK, ABA, and ETH contents were increased by 46.32%, 23.88% and 36.11% compared with that of the control, 
respectively. Unlike MEAM1, T. vaporariorum infestation only caused a slight decline in phytohormones content. After 
being infested with T. vaporariorum for 30 d, the auxin content in tobacco plants was reduced 19.46%, and the MeJA, 
ABA, and ETH contents were increased by 11.47%, 25.45%, and 20.7%, respectively. Significantly, T. vaporariorum 
infestation did not affect the GA or CK content.

Effects of exogenous GA on MEAM1-infested tobacco plant height
Exogenous application of GA partially rescued MEAM1 infested inhibition of tobacco plant growth (Figure 6). Although 
the tobacco plant height of 0.5 μM GA treatment was similar to that of the MEAM1 feeding treatment, the tobacco plant 
height of 1.0 and 2.0 μM GA treatment was higher than that of the MEAM1 treatment, and increased by 74.33% and 
91.64%, respectively, but remained lower than that of the tobacco plants without MEAM1, being reduced by 22.88% and 
15.22%, respectively.

Figure 5. Effects of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum infestation on tobacco leaf endogenous 
phytohormones content.

GA: Gibberellin; CK: cytokinin; MeJA: methyl jasmonate; ABA: abscisic acid; ETH: ethylene.
Nicotiana tabacum plants (n = 4) were infested by whitefly for 30 d compared to uninfested plants. Same letters indicate nonsignificant difference 
(P > 0.05).
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DISCUSSION

Unlike other phloem-feeding insects, MEAM1 infestation can cause specific morphological characteristics on plant 
(Zhang et al., 2017a). In this study, compared with T. vaporariorum, MEAM1 infestation inhibited tobacco growth, 
causing significant reductions in plant height, internode length, and dry weight. In agreement with our results, infestation 
by Bemisia tabaci reduces Gossypium spp. plant height and number of nodes (Jindal et al., 2009). And high and moderate 
infestations of Brevicoryne brassicae L. and Lipahis eyrsimi K. on Brassica significantly reduce plant and pod length, 
pods per plant, grains per pod, and pod weight (Hussain et al., 2015). Importantly, this negative effect mediated by 
MEAM1 varied with feeding density. As little as the low-density treatment (50 ± 5 MEAM1 per plant) could cause 
significant inhibition, and this effect was more significant as the density of infection increased. In contrast, T. vaporariorum 
only caused slight inhibition in the high-density treatment (200 ± 10 T. vaporariorum per plant). This indicates that the 
influence of insects on host plants varies with species. 
	 Phloem-feeding insects feed on plant phloem using their stylets, this process may damage the photosynthetic system 
of the host plant leaves (Bueno et al., 2009). In this research, MEAM1 infestation caused a significant reduction in 
chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration rate of tobacco upper leaf. However, 
nonsignificant reduction in tobacco upper leaf was detected after T. vaporariorum infestation. Previous study suggests 
that MEAM1 nymph feeding on N. tabacum L. var. K326 decreased the stability of the oxygen-evolving complex and the 
electron transport of photosystem II (PSII) (Li et al., 2018). In addition, as stomatal guard cells can sense various biotic 
and abiotic stress irritation and immediately institute closure under adverse conditions, MEAM1 feeding may reduce leaf 
photosynthesis in tomato by restricting gas exchange through stomata and reducing chlorophyll content (Marta et al., 
2015). In this study, we suspected that chlorophyll content and stomatal closure induced by MEAM1 may be contributing 
to reduce photosynthetic rate of tobacco leaf. 
	 Plant hormones not only participate in growing process but also transmit environmental signals and activate appropriate 
responses to biotic and abiotic stresses (De Bruyne et al., 2014). Here, the feeding of MEAM1 resulted in significant 
changes in the hormone content of tobacco. Among which, auxin, GA, and methyl jasmonate (MeJA) contents were 
significantly decreased, whereas CK, ABA, and ETH contents were increased. What is different from MEAM1 is that T. 
vaporariorum infestation significantly suppressed auxin synthesis, whereas enhanced contents of MeJA, ABA, and ETH, 
and no obvious change in GA or CK contents was detected. External application indicated that GA partially alleviated 
the inhibiting effects on plant height mediated by MEAM1 infestation. Therefore, GA may play a crucial role in the 
tobacco-specific growth inhibition caused by MEAM1. The chewing herbivore C. suppressalis attack on rice negatively 
regulates GA biosynthesis, and the attacked plants display dwarfism (Li et al., 2015). The response of plants to cold 
stress is related to GA signaling, accompanied by dwarfism, and the dwarfism can be partially restored by GA application 
(Zhou et al., 2014; Zhu et al., 2016). Besides, recent research shows that GA signaling can remarkably affect plant 
photosynthetic capacity via regulating the activity and content of ribulose-1,5-bisphosphate carboxylase, chlorophyll 
content, and chloroplast biogenesis rates (Jiang et al., 2012). 

Same letters indicate nonsignificant difference (P > 0.05). (n = 12).

Figure 6. Effects of exogenous gibberellic acid (GA) (0.5, 1.0 and 2.0 μM) on tobacco plant height infested with Bemisia 
tabaci MEAM1.
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CONCLUSIONS

Compared with Trialeurodes vaporariorum, damage caused by Bemisia tabaci MEAM1 to tobacco plant was more 
severe and specific. Plant height, internode length, and dry weight were reduced, and there was a significant decrease 
in chlorophyll content, photosynthetic rate, and stomatal conductance, and the growth inhibition may be related to the 
reduction of gibberellin content. 
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