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ABSTRACT

The rice (Oryza sativa L.) crop is very important worldwide for its contribution to human nutrition. Rice grain yield 
depends on several agronomic management factors that must also be adjusted to the cropping system such as permanent 
inundation (anaerobic conditions) or direct seeding (aerobic and anaerobic conditions) mainly in response to the 
application of nutrients such as N. In Chile, the cropping system with direct seeding has limited agronomic and scientific 
development. The objective was to determine the effect of increasing N (0, 40, 80, 120, and 160 kg ha-1), P (0, 30, 60, and 
120 kg P2O5 ha-1), and K (0, 30, 60, and 120 kg K2O ha-1) rates on grain yield and N agronomic efficiency (NAE) (kg grain 
produced per kg N applied) in two paddy rice soils for two consecutive seasons. Grain yield had a positive response to 
increasing N rates in the two evaluated soils (grain yield increased from 6.7 to 8.9 Mg ha-1 in the Vertisol and from 7.4 to 
11.0 Mg ha-1 in the Alfisol) and a low response to P rates in the Vertisol. The Alfisol showed no response to increasing P 
rates, and both soils had no response to K application. The N rates that obtained the highest rice grain yield were 120 and 
160 kg ha-1 for Alfisol and Vertisol, respectively. The P rate that obtained the highest rice yield in the Vertisol was 30 kg ha-1 
P2O5. In addition, NAE values associated to those N rates were 74 and 61, respectively. In conclusion, direct seeding in 
rice cropping had a response to high rates of applied N, low response to P, and no response to K.
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INTRODUCTION

Rice (Oryza sativa L.) is one of the most important cereal crops worldwide that is part of the human diet (FAO-IFA, 2004) 
because of its nutritional characteristics (Juliano, 1993) and low cost. Among seeding systems, the most used is permanent 
inundation, but direct seeding is also used (Chauhan et al., 2012; Mahajan et al., 2013). Zhang et al. (2012) have reported 
that direct seeded rice accounted for 90% of the total rice planting area in the Americas. However, agronomic management 
in direct seeding compared with permanent inundation can differ such as for seeding date, water requirements during the 
earlier crop stages, weed management and control, lower amount of greenhouse gas emissions, and N fertilization rates 
(Khan et al., 2012; Mahajan et al., 2013; Tao et al., 2016). 
 Nitrogen is the main nutrient associated with yield in the rice crop, but N rates respond differently to rice type (indica 
or japonica), cultivar, geographic zone, and other crop practices (Bouman et al., 2007; De-Xi et al., 2007; Huang et al., 
2008; Jing et al., 2008; Hirzel et al., 2011a).
 To adjust the N rate in rice, it is important to know how much N was supplied by soil mineralization (Angus et al., 
1994); it is highly variable over time, difficult to estimate, and represents only a very small fraction of total soil N (Scott 
et al., 2005; Wienhold, 2007). Several laboratory methods have been developed with different coefficient adjustments for 
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N crop response, N extraction, or grain yield (Angus et al., 1994; Scott et al., 2005; Sahrawat, 2006; Bushong et al., 2007; 
Hirzel et al., 2011b). These methods have generated local recommendations that cannot be easily applied to all cultivars, 
crop management, and regions of the world. 
 Unfortunately, N management in direct seeded rice has received very little attention and management is usually similar 
to cropping with permanent inundation (Chen et al., 2018). Studies reported by Mahajan et al. (2011) indicate that the N 
requirement for direct seeded rice differs from the permanent inundation system. The main differences in N management 
are the relationships with specific soil saturation, crop growth patterns, root system, and seed rates (Mahajan et al., 2011; 
2012). Liu et al. (2015) reported a significant increase in N use efficiency for grain production (NUEg) (N uptake by 
fertilized treatment − N uptake by control without fertilization)/Rate of N applied in fertilized treatment) between 10.9% 
and 47.9% for three consecutive seasons with direct seeded rice compared with the permanent inundation system. In 
contrast, Tao et al. (2016) found no differences in NUEg between both seeding systems at the same N rate. As for optimal 
water management, the value of NUE was > 80% with direct seeded rice (Wilson et al., 2000), while the value reported 
for NUE fluctuated between 30% and 40% with permanent inundation (Zheng et al., 2007). 
 Regarding the use of other nutrients, there are differences between geographic areas and countries. In USA, for 
example, P, K, Zn, and S are applied as basal fertilizer; N is applied in two splits at pre-flooding and midseason between 
panicle initiation and differentiation, in three splits as basal fertilizer, or at seeding, pre-flooding, and midseason. In Sri 
Lanka, P is applied as basal fertilizer, K is applied either as basal fertilizer or in two splits (basal and panicle stage), and N 
is applied in three or four splits. In Malaysia, P, K, and 2/3 N are applied 15 d after seeding and the remaining N is applied 
at the panicle initiation stage (Kumar and Ladha, 2011). 
  In Chile, the area cropped with rice has fluctuated between 25 000 and 40 000 ha yr-1, and approximately 15% 
corresponds to the direct seeding method. Research with different N, P, and K rates was conducted at two representative 
locations of the Chilean rice area for two seasons. The objective of this study was to determine the effect of increasing N, 
P, and K rates on grain yield and optimize the rate of nutrient use in the new rice cultivar Digua-CL (Clearfield) that has 
great potential in Chile.

MATERIALS AND METHODS

The study was conducted in south-central Chile in two types of rice soils with monocrop and rotation during the 2016-
2017 and 2017-2018 seasons. This study included Alfisol and Vertisol: clay loam (fine, mixed, active, thermic Aquic 
Haploxeralfs) in Parral, Maule Region, and Quella clay loam (fine, smectitic, thermic Aquic Durixererts) in San Carlos, 
Ñuble Region (CIREN, 1997). The climate is Mediterranean, characterized by high temperatures and low rainfall in 
summer and low temperatures and high rainfall in winter. Minimum and maximum temperatures (Table 1), precipitation, 
and evaporation (Table 2) were measured in the three growing seasons and two evaluated locations. 

January 13.0 29.8 12.5 30.7 11.8 28.8 12.4 30.2 13.8 33.6 11.6 31.0
February 11.2 29.5 12.5 29.3 11.7 30.0 11.4 31.8 12.6 31.3 11.9 32.4
March 9.3 27.8 9.1 24.9 8.7 25.3 9.1 30.4 9.3 27.6 8.3 27.8
April 7.2 18.6 7.3 21.0 5.7 19.3 6.3 20.3 6.3 23.8 5.1 22.4
May 7.8 16.2 4.1 13.8 5.4 14.9 7.3 18.1 3.9 16.2 4.3 18.2
June 1.6 11.3 4.3 11.9 2.1 10.9 0.9 14.0 3.6 13.7 1.3 14.0
July 4.0 11.6 2.6 12.2 2.3 12.2 2.7 13.2 1.8 14.5 1.9 14.3
August 4.6 14.4 3.9 12.7 2.9 13.8 3.5 16.9 3.2 14.3 1.9 16.5
September 5.5 19.6 4.4 16.3 6.1 17.1 3.7 22.1 3.4 18.1 5.6 19.1
October 7.2 20.1 6.4 18.0 6.5 18.4 6.5 22.5 6.0 19.8 5.6 20.2
November 9.0 25.3 9.0 22.9 9.1 23.1 8.3 27.3 8.5 25.1 8.0 25.9
December 10.4 26.6 10.7 27.6 10.5 27.2 10.0 28.0 10.7 29.7 9.6 29.4
Mean 7.6 20.9 7.2 20.1 6.9 20.1 6.8 22.9 6.9 22.3 6.3 22.6

2016 20162017 20172018 2018

Tm TM Tm TM Tm TM Tm TM Tm TM Tm TM

Table 1. Minimum (Tm) and maximum (TM) temperatures at both locations during 2016, 2017, and 2018. 
Alfisol (San Carlos) Vertisol (Parral)

ºC ºC

Month
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 To determine soil chemical and physical properties, soil samples were collected in cores at the 0-20 cm depth before 
crop establishment (Table 3). Soil anaerobic incubation was used to determine N-NH4

+ availability through mineralization 
under anaerobic conditions; 5 g soil and 12.5 mL distilled water were placed in a test tube and incubated without shaking 
at 20 ºC for 21 d (Hirzel and Stolpe, 2014). Soil ammonium extracts were obtained by adding 12.5 mL 2 M KCl to the 
soil tubes and the mixture was shaken for 1 h, filtered, and N-NH4

+ measured with a Skalar autoanalyzer (segmented flux 
spectrophotometer) (Skalar San++, SkalarAnalytical, Breda, The Netherlands).
 The procedures to analyze soil characteristics were carried out in the laboratory of the Instituto de Investigaciones 
Agropecuarias (INIA), Chile (Sadzawka et al., 2006). All samples were air-dried, ground, and put through a 2 mm sieve. Soil 
pH was determined in 1:2.5 soil:water extracts with a pH meter. Electrical conductivity was measured with a conductivity cell 
(1:5 soil:water) and organic C and total N with a total elemental analyzer (Vario MAX CNS, Elementar, Hanau, Germany). 
Soil extractable P was determined in 0.5 M NaHCO3 (Olsen P) by the molybdate/ascorbic acid method. Soil available 
K, Ca, Mg, and Na were extracted with 1 M NH4OAc and determined by flame emission spectrometry (K and Na) and 
atomic absorption (Ca and Mg). Soil extractable S-SO4 was determined with 0.01 M calcium phosphate and by turbidimetry. 

Clay, % 31.4 34.4
Silt, % 31.6 41.3
Sand, % 37.0 24.3
Bulk density, g cm-3 1.67 1.78
Total porosity, % 37.0 32.8
pH(soil:water 1:5) 6.44 6.30
Organic matter, % 3.11 2.11
Available N, mg kg-1 3.0 4.4
Olsen P, mg kg-1 37.3 3.9
Exchangeable K, cmolc kg-1 0.22 0.13
Exchangeable Ca, cmolc kg-1 11.04 9.29
Exchangeable Mg, cmolc kg-1 2.42 5.11
Exchangeable Na, cmolc kg-1 0.29 0.30
Exchangeable Al, cmolc kg-1 0.02 0.03
Available S, mg kg-1 9.53 1.00
Available Fe, mg kg-1 123.11 95.28
Available Mn, mg kg-1 51.59 81.86
Available Zn, mg kg-1 0.63 0.29
Available Cu, mg kg-1 2.22 2.78
Available B, mg kg-1 0.38 0.03

Table 3. Soil physical and chemical properties (0-20 cm depth) prior to beginning the experiment (2016).

Parameters Alfisol Vertisol

January 6.3 188.8 2.2 237.1 1.5 188.3 0.9 180.9 0.3 202.9 0.0 181.7
February 0.0 178.7 23.4 156.2 0.1 157.5 0.0 174.3 0.3 134.2 4.5 146.8
March 2.8 139.1 19.2 121.7 3.9 137.3 0.1 130.2 10.4 105.3 16.8 128.8
April 78.8 59.9 62.4 73.6 64.4 61.7 61.0 54.2 18.0 69.5 16.7 56.9
May 56.8 31.3 96.2 32.4 89.3 29.7 56.1 27.9 68.2 30.1 36.2 26.1
June 14.2 22.5 201.4 39.1 94.2 19.9 8.7 20.8 59.5 23.5 45.2 19.6
July 147.2 24.5 92.2 29.9 96.0 27.5 85.8 22.6 100.6 28.4 108.9 26.7
August 46.0 46.9 231.0 38.6 81.0 40.9 14.5 45.6 154.7 38.7 43.0 41.3
September 11.9 84.4 74.7 69.5 109.4 70.8 7.1 86.1 47.9 70.6 61.2 72.6
October 66.7 103.5 68.3 95.6 77.2 91.2 49.9 106.9 38.6 98.4 46.6 92.9
November 11.6 160.4 45.0 136.9 65.2 132.8 5.4 152.7 22.2 140.9 17.3 131.3
December 16.9 174.9 8.9 180.3 14.8 176.5 9.2 164.0 2.3 183.1 1.6 157.0
Total 459.2 1214.9 924.9 1210.9 729.0 1134.1 298.7 1166.2 523.0 1125.6 398.0 1081.7accumulation

2016 20162017 20172018 2018

pp ET0 pp ET0 pp ET0 pp ET0 pp ET0 pp ET0

Table 2. Precipitation (pp) and evapotranspiration (ET0) of both locations during 2016, 2017, and 2018 seasons.  
Alfisol (San Carlos) Vertisol (Parral)

Month
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Soil micronutrient and trace element concentrations were extracted in DTPA (diethylentriaminepentaacetic acid) by atomic 
absorption spectrometry. The B concentration was determined by extraction in hot water with azomethine H.
 To optimize crop growth, plots were cultivated with conventional tilling equipment to form seedbed in accordance 
with standard agronomic practices for rice crops in central Chile. The direct seeding system was used for sowing. The 
recommendation for water use for rice sown under dry soil conditions consisted of flooding 15-25 d after emergency when 
rice plants were in the V3 or V5 stages (3-5 leaves) (Counce et al., 2000) and maintaining a 5 to 10 cm water height up to 
20 d before harvest or until physiological maturity (Carracelas et al., 2019).
 Three fertilization experiments were conducted in each soil and season, that is, five increasing N rates (0, 40, 80, 120, 
and 160 kg N ha-1), four increasing P rates (0, 30, 60, and 120 kg P2O5 ha-1), and four increasing K rates (0, 30, 60, and 
120 kg K2O ha-1). 
 For the experiment with increasing N rates, 60 kg P2O5 and 60 kg K2O as triple superphosphate and potassium chloride 
(KCl), respectively, were applied at seeding. Nitrogen was applied at three different times: 33% the day prior to seeding, 
33% at tillering, and 34% at initial panicle (Hirzel et al., 2011a). For the experiment with increasing P rates, 120 kg N and 
60 kg K2O as urea and KCl, respectively, were applied. For the experiment with increasing K rates, 120 kg N and 60 kg 
P2O5 as urea and KCl, respectively, were applied. Both P and K were applied at seeding.
 ‘Digua-Clearfield’, from the Clearfield experimental rice line, is the first Chilean Clearfield variety of the temperate 
japonica type and was direct seeded (Paredes et al., 2019). It reduced herbicide use to a single product and provided 
adequate weed control. The seeding rate was 160 kg ha-1 at the two experimental locations and sowing occurred on 14 
October 2016 and 15 October 2017. Weed control after emergence consisted of a herbicide combination: Penoxsulam 
(2-(2,2-difluoroethoxy)-N-(5,8-dimethoxy-[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-6-(trifluoromethyl)benzenesulfonamide; 
240 g L-1; Ricer Dow AgroSciences, Indianapolis, Indiana, USA), MCPA (2-(4-chloro-2-methylphenoxy)acetic acid; 
750 g L-1; MCPA 750 SL, A.H. Marks and Company, Bradford, UK), and bentazone (2,2-dioxo-3-propan-2-yl-1H-
2lambda6,1,3-benzothiadiazin-4-one; 480 g L-1; Basagran, BASF, Ludwigshafen, Germany) at rates of 0.03, 0.19, and 
0.72 kg ai ha-1, respectively. The crop was harvested at grain maturity with 18% grain moisture content at the end of 
March in both 2016 and 2017. The evaluated parameters were paddy grain yield and N agronomic efficiency (NAE) (kg 
grain produced per kg N applied). Yield was evaluated from a 1 × 2 m sample from each plot. Grain moisture content was 
measured with a moisture meter (Satake model SS-5, Sharma Agrico Industries, West Bengal, India) and grain yield was 
calculated at 14.5% moisture content (Hirzel et al., 2011a).   
 A split-split plot experimental design was used for each experiment with increasing N, P, or K rates in which the main 
plot was the soil, the split plot was the season, and the N, P, and K rates were the split-split plot. Three replicates were used 
for each experimental unit. Results were analyzed with ANOVA and Tukey’s test (p = 0.05) by the SAS general model 
procedure (SAS Institute, Cary, North Carolina, USA). In addition, some contrasts were defined to quantify the effects 
because the experimental design did not allow for independent assessments of the effect of soils, season, and N, P, and K 
rates (interactions between sources of variation) (Hirzel et al., 2011a). 

RESULTS AND DISCUSSION

Soil properties prior to the experiment
The physical and chemical properties of each soil prior to the experiments exhibited few limitations for rice cultivation. 
Some important properties include a low K concentration in both soils and low available P, S, Zn, and B in the Vertisol 
(Table 3). High organic matter (OM) content and available Fe in the Alfisol, which are associated with the soil N supply 
capacity (Sahrawat, 2006; Lima et al., 2008; Hirzel and Stolpe, 2014), should be highlighted (Table 3) when compared 
with the mean value of Chilean paddy rice soil (Hirzel et al., 2011a). 

Increasing N rates
For the experiment with increasing N rates, grain yield was significantly affected by soil, season, and N rate (p < 0.01) 
(Table 4). There was a significant interaction between soil and N rate (p < 0.01). The NAE was also significantly affected 
by soil, season, and N rate (p < 0.01). When comparing the two soils as the mean of seasons and N rates (Table 4), the 
highest grain yield and NAE were obtained in the Alfisol (p < 0.05) with increases of 1.55 Mg ha-1 and 18.9, respectively, 
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as compared with the Vertisol. When comparing the mean of soils and N rate between seasons (Table 5), the highest 
grain yield and NAE occurred in the 2017-2018 season (p < 0.05) with increases of 0.51 Mg ha-1 and 8.6, respectively, 
compared with the 2016-2017 season. 
 The decrease in grain yield in the 2016-2017 season was probably due to high temperatures during the reproductive 
stage (panicle initiation), and the maximum temperature was 39 and 44 °C at the San Carlos and Parral locations, 
respectively (data not shown). High temperatures (> 35 °C) during the reproductive stage can cause spikelet sterility 
and low grain yield (Wang et al., 2019). High temperatures during panicle initiation (> 38 °C) induce spikelet 
degeneration (Jagadish et al., 2013; Wang et al., 2015; Wu et al., 2017), cell damage from increased peroxide radical 
production (Fu et al., 2015), reduced number of spikelets, and inhibition of anther filling (Wang et al., 2016). In general, 
grain yield and NAE values were normal for the geographic zone in which the experiments were conducted (Artacho et 
al., 2009; Hirzel et al., 2011b; Hirzel and Rodríguez, 2017). 
 The higher yield obtained in the Alfisol can be associated with its higher OM and available Fe content (Table 3); these 
soil parameters are associated with potentially mineralizable N in the soil (Sahrawat, 2006; Lima et al., 2008; Hirzel and 
Rodríguez, 2017). The higher concentration of available S, Zn, and B in the Alfisol (Table 3) should also be mentioned 
because it can increase yield potential compared with the Vertisol.
 The effect of the Soil × N rate interaction on grain yield (Figures 1a and 1b) indicated a significant response to 
increasing N rates (p < 0.05). The highest yield in the Alfisol was obtained with 120 kg N ha-1 (p < 0.05) (Figure 1a). 
Meanwhile, the highest yield in the Vertisol was obtained with 160 kg N ha-1, which was only higher than the N-free 
control and 40 kg N treatment (p < 0.05) (Figure 1b). The Vertisol showed an increased yield response (Figure 1b) of 
3.6 Mg ha-1 compared with the N-free control, while the increase in the Alfisol was only 2.2 Mg ha-1 compared with the 
N-free control (Figure 1a). The different response in these soils is associated with the lower N mineralization capacity 
of the Vertisol (more dependent on N fertilization) given its lower OM and available Fe content (Table 3), as discussed 
above (Sahrawat, 2006; Lima et al., 2008; Hirzel and Rodríguez, 2017). The response to the increasing N rate for 
the direct seeding system in the study area was greater than findings reported by some authors for traditional seeding 
systems (Ortega, 2007; Hirzel et al., 2011b; Hirzel and Rodríguez, 2017). Artacho et al. (2009) reported grain yield 
response to an N rate between 160 and 200 kg ha-1 for a traditional rice sowing system in the same study area, although 
they did not indicate the number of split plots used. 

Grain yield ** ** ** NS ** NS NS

NAE ** ** ** NS NS NS NS
 Soil (S) Season (Y) P rate (P) Interaction S × Y Interaction S × P Interaction Y × P Interaction S × Y × P

Grain yield * ** ** ** NS ** NS
 Soil (S) Season (Y) K rate (K) Interaction S × Y Interaction S × K Interaction Y × K Interaction S × Y × K

Grain yield NS NS NS NS NS NS NS

Table 4. Statistical analysis of rice grain yield for the experiments with increasing N, P, and K rates and N agronomic efficiency 
(NAE) in the treatment fertilized with N. 

*Significant at p < 0.05; **Significant at p < 0.01; NS: nonsignificant.

Soil 
(S)

Season 
(Y)

N rate 
(N)

Interaction 
S × Y

Interaction 
S × N

Interaction 
Y × N

Interaction 
S × Y × NParameters

Increasing N rates Grain yield, Mg ha-1 9.44a 7.89b 8.41b 8.92a
  NAE 123.20a 104.30b 109.50b 118.10a
Increasing P rates Grain yield 9.17b 9.54a 9.74a 8.98b

ParametersExperiment Alfisol Vertisol 2017-20182016-2017

Table 5. Rice grain yield in two soils for two seasons as a mean of different N and P rates and N agronomic 
efficiency (NAE). 

Soil Season

Different letters in the same row indicate significant differences between soils or seasons according to Tukey’s 
test (p < 0.05).
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 As expected, there was an inverse relationship between NAE and the N fertilization rate related to NAE as a mean of 
the two soils and two seasons (Figure 2). There was also a significant decrease in this value (p < 0.05) with the increasing 
N rate. Given that the highest yield in the evaluated soils occurred at rates of 120 and 160 kg ha-1 (Alfisol and Vertisol, 
respectively), the NAE values associated with these yields fluctuated between 74 and 61 kg grain kg-1 N for each N rate, 
respectively. These values were slightly higher than those indicated by Thind et al. (2018) in their rice experiment with 
direct seeding and N rates between 120 and 180 kg ha-1, which resulted in a maximum yield (6.6 Mg ha-1) that was lower 
than the values in our experiment.

Increasing P rates
The statistical analysis indicated that grain yield was significantly affected by soil (p < 0.05), season, and P rate (p < 0.01). 
There was a significant interaction between soil and P rate (p < 0.01) and between season and P rate (p < 0.01) (Table 4).
 When comparing soils as a mean of seasons and P rates (Table 5), the highest grain yield was obtained in the Alfisol 
(p < 0.05) with increases in grain yield of 0.37 Mg ha-1 compared with the Vertisol. This was consistent with the results of 
the experiment with increasing N rates (Table 5).
 Meanwhile, the highest grain yield was achieved in the 2016-2017 season (p < 0.05) with increases in grain yield 
of 0.76 Mg ha-1 compared with the 2017-2018 season when comparing between seasons as a mean of soils and P rates 

Figure 1. Rice grain yield with increasing N rates in two soils, Alfisol (A) and Vertisol (B), as the mean of two seasons 
(2016-2017 and 2017-2018).

Different letters over the bars indicate significant differences according to Tukey’s test (p < 0.05).  
Lines over the bars indicate standard error.
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(Table 5). This result contrasts with our findings in the experiment with increasing N rates (Table 5). However, the same 
120 kg N ha-1 rate was used in the experiment with increasing P rates, whereas different N rates (mean 80 kg ha-1 for 
treatments) were used in the experiment with increasing N rates; this could have reduced the potential crop yield in the 
direct seeding system (Mahajan et al., 2011; 2012). As shown in Table 5, the mean yield of soils or seasons are 8.67 and 
9.36 Mg ha-1 in the experiments with increasing N and P rates, respectively. 
 The increasing P rates in the Alfisol for both seasons (Figures 3a and 3b) had nonsignificant effect on grain yield 
(p > 0.05). However, increasing P rates in the Vertisol for both seasons (Figures 4a and 4b) only affected grain yield in the 
2016-2017 season (p < 0.05). The lowest grain yield was obtained in the P-free control in the Vertisol in the 2016-2017 
season (p < 0.05), and there was no difference between treatments in which different P rates were applied (p > 0.05). The 
response to P application in the Vertisol in the first season can be associated with the low concentration of this nutrient in 
the soil (Table 1), while no response to adding P was expected in the Alfisol because of the high concentration of available 
P in the soil at the beginning of the experiments (Table 3). However, a response to P application in the Vertisol was 
expected in the second season but no effect was found (Figure 4b), although mean yields in this soil were similar between 
seasons (9.52 and 9.56 Mg ha-1 in the 2016-2017 and 2017-2018 seasons, respectively). Frageria et al. (2011) indicated 
that the anaerobic soil environment created by flood irrigation of lowland rice generates several chemical changes in the 
rhizosphere, which decrease the oxidation-reduction or redox potential and improve the concentration and availability of 
P and other nutrients. Hernández et al. (2013) indicated that P desorption forms clays under flooding conditions, which 
could explain the lack of response to the P application.

Increasing K rates
The statistical analysis indicated neither significant effects for any of the sources of variation nor for the interaction effects 
(p > 0.05) (Table 4). Grain yield varied between 9.48 and 11.43 Mg ha-1 (data not shown). Although the K concentration 
in the Vertisol was very low (Table 3), there was no response to its application in either of the two evaluated seasons 
(Table 5). This can be explained by K desorption processes from Vertisol expansive clays (Havlin et al., 1999), which are 
enhanced in soil flooding processes, generating a larger fraction of K ions that are displaced from the exchange complex 
into the soil solution (Frageria et al., 2011). The K concentration in the Alfisol was moderate (Table 3); in addition, K 
desorption processes in non-expansive clays (Havlin et al., 1999) in a flooded soil allow an adequate K supply to the rice 
crop (Frageria et al., 2011). The release of Fe and Mn ions and ammonium ion production result in the displacement of 
some K ions from the exchange complex to the soil solution (Patrick and Mikkelsen, 1971). Dobermann and Fairhurst 

Figure 2. Nitrogen agronomic efficiency (NAE) with four increasing N rates as the mean of two soils (Alfisol and Vertisol) 
and two seasons (2016-2017 and 2017-2018).

Different letters over the bars indicate significant differences according to Tukey’s test (p < 0.05).  
Lines over the bars indicate standard error.
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Figure 3. Rice grain yield with increasing P rates in an Alfisol for the 2016-2017 (A) and 2017-2018 (B) seasons.

Different letters over the bars indicate significant differences according to Tukey’s test (p < 0.05).  
Lines over the bars indicate standard error.

(2000) indicated that the soil K critical level for soils with high clay content is 0.2 cmol kg-1. In addition, these authors 
showed that this critical level could fluctuate with the type of clay; it can fluctuate between 0.1 and 0.4 cmol K kg-1 and is 
lower in type 1:1 clay soils and higher in type 2:1 clay soils. In our experiment, exchangeable K in the Vertisol was 0.13 
cmol kg-1 (Table 3) and there was a response to K application.
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Different letters over the bars indicate significant differences according to Tukey’s test (p < 0.05).  
Lines over the bars indicate standard error.

Figure 4. Rice grain yield with increasing P rates in a Vertisol for the 2016-2017 (A) and 2017-2018 (B) seasons.

CONCLUSIONS

There was a positive grain yield response of direct seeded rice to increasing N rates in the two evaluated soils (Vertisol 
and Alfisol), and increasing P rates induced a low response in the Vertisol. Direct seeded rice in the Alfisol showed no 
response to increasing P rates, and both locations showed no response to K application.
 The N rates that showed the highest rice grain yield were 120 and 160 kg ha-1 for the Alfisol and Vertisol, respectively. 
In addition, the N agronomic efficiency values associated with those N rates were 74 and 61 kg grain produced per kg-1 N 
applied, respectively.
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