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ABSTRACT

Denitrification could lead to N loss from agricultural soil resulting in a low rate of N availability by crops. We investigated 
the response of nirK and nirS denitrifiers in a paddy soil to the incorporation of green manure and reduced chemical 
fertilizer. Soil samples were collected from plots of a short-term fertilization experiment initiated in 2009. The treatments 
were no chemical fertilizer, no Chinese milk vetch (Astragalus sinicus L., CK), chemical fertilizer (NPK), Chinese milk 
vetch (MV) plus 80% chemical fertilizer (MF80), MV plus 60% chemical fertilizer (MF60) and MV plus 40% chemical 
fertilizer (MF40). Abundance and community composition of nirK and nirS denitrifiers were analyzed using quantitative 
PCR and Miseq sequencing. Reduced chemical fertilizer did not reduce content of total N and available N in soils 
amended with green manure. Abundances of nirK and nirS genes in different treatments were 1.04 ×108 to 4.89×108 and 
1.22 ×107 to 7.04 ×107 copies g-1 soil, respectively, which were significantly higher in NPK treatment than those in soils 
with green manure. NirK abundance was positively correlated with the potential denitrifying activity (PDA) (r2 = 0.827, 
p < 0.01). Green manure combination with reduced chemical fertilizer significantly changed the community structure of 
nirK denitrifiers but not nirS denitrifiers relative to soils amended with chemical fertilizer and unfertilized soil. Shifts of 
community structure of nirK denitrifiers were closely associated with soil organic matter (r2 = 0.623, p = 0.003), available 
N (r2 = 0.507, p = 0.01), pH (r2 = 0.661, p = 0.006), and PDA (r2 = 0.633, p = 0.005). In conclusion, nirK-type denitrifying 
community was more sensitive to the incorporation of green manure and reduced chemical fertilizer and they played a 
more important role in the denitrification process in this study.
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INTRODUCTION

Denitrification is an important step in the environmental N cycle (Hayatsu et al., 2008), in which NO3
- and NO2

- are 
reduced to gaseous end products (NO, N2O, and N2). Denitrification not only causes N losses from agricultural soil 
resulting in a low rate of N availability by crops but also contributes to greenhouse gas N2O emission (Chen et al., 
2012). N2O has 310× the greenhouse gas warming capacity as CO2 (Lashof and Ahuja, 1990) and is also an important 
ozone-depleting substance (Ravishankara et al., 2009). Therefore, research on the denitrification is of economic and 
ecological importance.
	 Denitrification is catalyzed by nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide reductase (NOR), and nitrous 
oxide reductase (NOS) (Zumft, 1997). NIR is thought to be the most important enzyme in the denitrification process because 
of its role in gas formation (Levy-Booth et al., 2014). NIR catalyzes the conversion of nitrite to nitric oxide and has been 
used as a molecular marker for denitrifying bacteria as only denitrifiers possess this enzyme (Braker et al., 2000). Two 
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functionally-equivalent nitrite reductases are known: one contains copper (Cu-nir) and is encoded by the nirK gene, 
and the other contains cytochrome cd1 (cd1-nir) and is encoded by the nirS gene. These two genes are thought to be 
mutually exclusive among denitrifying species and to represent two ecologically distinct denitrifying groups (Jones and 
Hallin, 2010). Furthermore, the characterization of these nir genes can provide biological insights into total potential 
denitrification (Morales et al., 2010).
	 Chemical fertilizers have been used to improve soil fertility and increase crop productivity. To meet the needs of 
intensive agriculture, heavy inputs of chemical fertilizers have been applied to soil (Savci, 2012). However, excess 
application of mineral N has resulted in serious and long-term environmental consequences (Canfield et al., 2010). An 
alternative to conventional farming is to amend soils with organic N fertilizer which allows the recycling of already-fixed 
N (Vitousek et al., 1997). Chinese milk vetch (Astragalus sinicus L., MV) is considered the most popular green manure in 
the paddy fields of South China due to its high potential to fix N. Green manure can reduce chemical fertilizer application 
rates (Macguidwin et al., 2012). Reduced N fertilizer helps to reduce N loss from agricultural soils. Fertilization practices 
have been considered as an important driver of soil microbial succession (Cruz et al., 2009). Previous studies have 
demonstrated that the abundance and community structures of nirK and nirS denitrifiers respond differently to fertilization 
regimes (Yin et al., 2015; Cui et al., 2016). Chen et al. (2010) also revealed that the community composition of denitrifiers 
possessing nirK in a paddy soil were more sensitive to the fertilization practices than those with nirS, however, fertilization 
regimes had similar impact on the abundances of nirK and nirS genes. Moreover, the response of abundances of nirK and 
nirS genes to different N fertilization rates were different. The abundances of nirK gene increased with N fertilization 
increments while significantly low numbers of nirS gene were observed in the treatments with more N fertilization in an 
alkaline northern Chinese soil (Yang et al., 2017). Although the effects of fertilization regimes on the nir genes have been 
investigated, most studies have focused on chemical and organic fertilization. Little is known about the effect of green 
manure combination with reduced chemical fertilizer on the abundance and community structure of the denitrifiers in a 
paddy field. 
	 China is one of the major rice producers, accounting for 28% of all paddy fields globally (FAO, 2003). Denitrification 
is a major N transformation process in paddy soils due to the anaerobic condition in soil resulting in considerable 
amounts of N2O emissions (Yan et al., 2000). Therefore, the main objectives of this study were to determine the effects 
of green manure and reduced chemical fertilizer on the abundance, diversity, and composition of denitrifiers with nirK 
and nirS genes and to explore the responses of denitrifiers to green manure with reduced chemical fertilizer in a paddy 
soil in South China.

MATERIALS AND METHODS

Field description and soil sampling
The study area was at the Baisha Experimental Station (119°04’10” E, 26°13’31” N), which is located in the Minhou 
County, Fuzhou, Fujian Province, China. The area has a subtropical monsoonal climate, the average annual temperature is 
19.5 °C with an average annual precipitation of 1350 mm. The soil is classified as typic Hapli-Stagnic Anthrosols (USDA). 
A short-term (i.e., 8 yr) fertilization experiment was initiated in 2009, including five treatments with three replicates for 
each treatment in a random plot design. Each plot was 15 m2. The treatments were control (CK, no chemical fertilizer, 
no green manure), chemical fertilizer alone (NPK), Chinese milk vetch (Astragalus sinicus L., MV) plus 80% chemical 
fertilizer (MF80), MV plus 60% chemical fertilizer (MF60), MV plus 40% chemical fertilizer (MF40). Chemical fertilizer 
(urea, 81 kg N ha-1; superphosphate, 54 kg P2O5 ha-1; potassium chloride, 56.7 kg K2O ha-1) was used as base fertilizer 
and N (54 kg ha-1) and K2O (37.8 kg ha-1) were used in the tillering stage. The rotation of rice (Oryza sativa L.) and MV 
was employed, and the rice season was from July to October. Each MV treatment received the same concentration of MV 
(18 000 kg ha-1 from 2009 to 2014; 22 500 kg ha-1 after 2014) which contained 101 g kg-1 organic matter, 3.7, 1.1, and 2.8 
g kg-1 N, P, and K, respectively, and 86.2% water. Chinese milk vetch was sown in November and returned to the soils 
in April of next year. The soil sample was collected from the surface (0-20 cm in depth) of a paddy soil in October 2016 
(after the rice harvest). The soil moisture in the different treatments was 33.16%-34.42%. The samples were separated into 
two subsamples: the first sub-sample was stored at 4 ºC for chemical analysis and potential denitrifying activity while the 
second sub-sample was stored at -80 ºC for molecular analyses.
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Soil chemical properties
Soil organic matter was measured by the K2Cr2O7 oxidation method, total N with the Kjeldahl digestion analysis, available 
N with the NaOH hydrolyzable method (Lu, 2000). Soil ammonium N was determined by extracting the soil with 2 M KCl 
solution and then detected by indophenol blue colorimetric method. The nitrate N was determined by dual wavelength 
spectrophotometry method (Huang et al., 2009). Soil pH was measured by a pH meter using a soil-to-water ratio of 1:2.5 
(Alfaro et al., 2018). Potential denitrifying activity (PDA) was evaluated according to the acetylene inhibition method 
(Pell et al., 1996). Briefly, 10 g fresh soil were placed in 100 mL flasks containing 10 mL substrate with 1 mM glucose 
and 1 mM KNO3. Denitrifying conditions were achieved by flushing the headspace with pure N gas (99.9%) three times. 
Ten milliliters of acetylene were injected to inhibit the N2O reductase. Soils were incubated on a rotary shaker at 25 ºC 
for 6 h. Head space samples were collected every 2 h. Nitrous oxide was measured with a gas chromatograph (7890A, 
Agilent, Santa Clara, California, USA).

Soil DNA extraction
Total DNA was extracted from 0.25 g (fresh weight) of each soil sample using a soil DNA isolation kit (UltraClean, MO 
BIO Laboratories, San Diego, California, USA) according to the manufacturer’s instruction. The concentration of extracted 
DNA was quantified by NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Waltham, Massachusetts, USA).

Quantitative real-time PCR for nirK and nirS genes
Primer sets 583F/909R for nirK (Yan et al., 2003) and cd3aF/R3cd for nirS (Throbäck et al., 2004) were used to measure 
the abundances of denitrifiers using a 7500 Real-Time PCR System (Applied Biosystems, Foster City, California, USA). 
The 20-μL qPCR reaction mixture contained 16.4 μL SYBRGreen qPCR Master Mix (Takara Bio, Dalian, Liaoning, 
China), 0.8 μL forward and reverse primer (10 μM) and 2 μL DNA template. Quantitative real-time PCR parameters were: 
hold at 95 ºC for 10 min, then 40 cycles of 15 s at 95 ºC, and 1 min at 55 ºC for nirK and 56 ºC for nirS, respectively. Both 
nirK and nirS gene fragments were cloned in pMD-19 plasmid and the right gene inserts were chosen. Standard curves 
were obtained by serially diluting plasmid. The amplification efficiency was 94.25% (r2 = 0.9999) for nirK and 90.86% 
(r2 = 0.9943) for nirS, respectively.

High-throughput sequencing of the nirK and nirS genes for denitrifying bacteria
Primer sets of 1aCuF/R3CuR for nirK (Hallin and Lindgren, 1999) and cd3aF/R3cd for nirS (Throbäck et al., 2004) 
were selected to amplify the gene fragment by thermocycler PCR system (9700 GeneAmp, Applied Biosystems). The 
PCR reactions for nirK and nirS were conducted using the following program: 3 min denaturation at 95 °C, 35 cycles 
of 30 s at 95 °C, 30 s for annealing at 55 °C, and 45 s for elongation at 72 °C, and a final extension at 72 °C for 10 min. 
PCR reactions were performed in triplicate in total volume of 20 μL PCR mixture containing 5 × FastPfu buffer (4 μL), 
2.5 mM dNTPs (2 μL), 5 μM each primer (0.8 μL), FastPfu Polymerase (0.4 μL), 0.2 μL of BSA and 10 ng template 
DNA. The resulted PCR products were extracted from a 2% agarose gel and further purified using the AxyPrep DNA 
Gel Extraction Kit (Axygen Biosciences, Union City, California, USA) and quantified using single-tube fluorometer 
(QuantiFluor-ST, Promega, Madison, Wisconsin, USA) according to the manufacturer’s protocol. Purified amplicons 
were pooled in equimolar and paired-end sequenced (2 × 300) on an Illumina MiSeq platform (Illumina, San Diego, 
California, USA) according to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). 
The raw reads of nirK and nirS were deposited into the NCBI Sequence Read Archive (SRA) database (accession number: 
PRJNA544986 and PRJNA545044). 

Sequence data analysis
Raw fastq files were demultiplexed, quality-filtered by Trimmomatic and merged by FLASH with the following criteria: 
(i) Reads were truncated at any site receiving an average quality score < 20 over a 50 bp sliding window. (ii) Primers were 
exactly matched allowing 2 nucleotide mismatching, and reads containing ambiguous bases were removed. (iii) Sequences 
whose overlap longer than 10 bp were merged according to their overlap sequence. Operational taxonomic units (OTUs) 
were clustered with 97% similarity cutoff using UPARSE (version 7.1 http://drive5.com/uparse/) and chimeric sequences 
were identified and removed using UCHIME. The taxonomy of each nirK and nirS gene sequence was determined using 
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the Ribosomal Database Project (RDP) database (http://rdp.cme.msu.edu/). Principal coordinate analysis (PCoA) and 
redundancy analysis (RDA) were performed using R software version 3.2.1 (R Foundation for Statistical Computing, 
Vienna, Austria). 

Statistical analysis
Treatment effects were determined using one-way ANOVA with SPSS 19.0 (IBM Software, Armonk, New York, USA). 
Comparison of means was compared using Duncan’s test at a significant level of p < 0.05. Pearson correlation analysis 
was used to determine the correlation between the denitrifiers abundances and soil properties. Figures were plotted using 
GraphPad Prism 5.0 (GraphPad Software, San Diego, California, USA).

RESULTS

Soil properties and PDA under different fertilization regimes
The effects of green manure and reduced chemical fertilizer on soil properties are presented in Table 1. Compared 
with NPK treatment, fertilization treatments with MV caused an increase in the organic matter (p < 0.05). Fertilization 
treatments with MV increased the concentration of total N in contrast to the CK, but there was nonsignificant difference 
between treatments with MV and NPK treatment, and between NPK treatment and the CK. Compared with the CK, AN 
content in the fertilized treatments had a significant increase (p < 0.05). Moreover, fertilizer reduction did not decrease 
the content of AN and even MF60 had the highest AN content. Fertilization decreased the concentration of NH4

+-N and 
MF40 treatment had the lowest NH4

+-N content. The concentration of NO3
--N in the MF60 and MF40 treatments were 

significantly lower than that in the NPK treatment (p < 0.05) and there was nonsignificant difference in the NO3
--N 

concentration between MF80 and NPK treatment. The pH values among the different treatments varied between 5.23 and 
5.53. Application of fertilizer significantly decreased the pH compared with CK and there were no distinct differences 
among the fertilized soils. Different fertilization regimes had a significant impact on the potential denitrifying activity 
(PDA). PDA was significantly higher in the fertilized treatments than that in CK (p < 0.05). The highest PDA was 
observed in the plot amended with chemical fertilizer (NPK treatment). The plots with the green manure combination with 
reduced chemical fertilizer decreased soil PDA. Moreover, PDA in MF80 treatment was significantly higher than those in 
MF60 and MF40 treatments (p < 0.05). 

Abundances of nirK and nirS denitrifiers under different fertilization regimes
The abundance of nirK denitrifiers were significantly greater in soils under NPK compared to CK, however nonsignificant 
difference in the abundance of nirS denitrifiers between NPK and CK were observed (Figures 1a and 1b). Green manure 
combination with reduced chemical fertilizer decreased the abundances of nirK and nirS denitrifiers in comparison with 
NPK treatment. However, the abundances of nirK and nirS denitrifiers responded differently towards the fertilization 
regimes. There were nonsignificant differences in nirK abundances among green manure treatments, however, there 
were significant variations in the copy number of nirS gene among the green manures. The quantity of nirS gene in 
MF80, MF60 and MF40 treatments were 64.36%, 82.76% and 27.80% less than that in NPK treatment, respectively. 
Correlation analysis showed that nirS abundance was strongly negatively correlated with soil OM, TN and AN, but 

Table 1. Soil properties and potential denitrifying activity (PDA) under different fertilization regimes.

CK	 20.13 ± 0.70b	 1.20 ± 0.04b	 97.40 ± 1.83c	 5.28 ± 1.34a	 4.43 ± 0.22a	 5.53 ± 0.12a	 25.69 ± 1.03d
NPK	 20.87 ± 0.25b	 1.25 ± 0.05ab	 102.67 ± 0.57b	 3.45 ± 0.63bc	 4.53 ± 0.19a	 5.40 ± 0.10b	 61.24 ± 0.88a
MF80	 23.23 ± 1.01a	 1.27 ± 0.04a	 102.80 ± 2.75b	 3.98 ± 0.25b	 5.06 ± 0.97a	 5.27 ± 0.06b	 47.41 ± 1.14b
MF60	 22.70 ± 0.56a	 1.30 ± 0.02a	 109.03 ± 3.07a	 2.62 ± 0.41cd	 3.28 ± 0.61b	 5.23 ± 0.12b	 45.37 ± 1.09c
MF40	 23.10 ± 0.69a	 1.29 ± 0.01a	 107.43 ± 2.57a	 2.06 ± 0.54d	 3.63 ± 0.27b	 5.27 ± 0.06b	 44.59 ± 1.04c

CK: No chemical fertilizer and green manure; NPK: chemical fertilizer alone; MF80: Chinese milk vetch plus 80% chemical fertilizer; MF60: 
Chinese milk vetch plus 60% chemical fertilizer; MF40: Chinese milk vetch plus 40% chemical fertilizer; OM: organic matter; TN: total N; 
AN: available N.
Different letters in the row indicate significant differences according to Duncan’s test (p < 0.05).

OM
g kg-1 mg kg-1 

TN AN NO3
--N pH PDATreatment NH4

+-N
ng N2O-N g-1 dry soil h-1 
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positively correlated with soil pH (Table 2). However, no such correlations existed between nirK abundance and soil 
properties. Furthermore, PDA was significantly positively correlated with the copy number of nirK (r2 = 0.827, p < 0.01 
by Pearson correlation test).

Richness and diversity of the denitrifiers under different fertilization regimes
After removing low-quality sequences, a total of 227 571 nirK sequences and 214 345 nirS sequences were obtained 
in the five treatments (a total of 15 soil samples). The sequences were assigned to 306-480 OTUs for nirK and 233-291 
OTUs for nirS at the 97% similarity level, respectively. The OTU number of nirK gene was significantly higher than 
that of nirS gene in each treatment. Incorporation of green manure and reduced chemical fertilizer had little impact on 
the richness of denitrifier-related OTUs (estimated by Chao1) (Table 3). There was a significant difference in the Chao1 
index of nirK between MF40 and other treatments, and that of nirS between MF60 and other treatments. Application of 
chemical fertilizer alone (NPK) significantly decreased the Shannon index of nirK and nirS gene compared with that of 
the CK. When compared with NPK treatment, green manure plus reduced chemical fertilizer significantly decreased the 
Shannon index of nirK gene by 10.8% in MF80, and 16.9% in MF40. In contrast, the Shannon index of nirS gene in the 
green manure treatments significantly increased by 7.9%, 13.9% and 9.0%, compared with NPK treatment, respectively. 

Figure 1. Copy number of nirK (a) and nirS (b) genes across different fertilization regimes.

CK: No chemical fertilizer and green manure; NPK: chemical fertilizer alone; MF80: Chinese milk vetch plus 80% chemical fertilizer; MF60: 
Chinese milk vetch plus 60% chemical fertilizer; MF40: Chinese milk vetch plus 40% chemical fertilizer. 
Different letters on bars indicate significant differences between treatments according to Duncan test (p < 0.05).

Table 2. Correlation between the abundance of nirK and nirS denitrifiers and soil properties.

nirK 	 -0.134	 0.099	 -0.038	 -0.042	 0.371	 -0.105	 0.827**
nirS 	 -0.681*	 -0.538*	 -0.549*	 0.302	 0.291	 0.580*	 -0.033

OM: Organic matter; TN: total N; AN: available N; PDA: potential denitrifying activity.
*, **Indicate that abundance of denitrifiers is significantly correlated with soil properties at p < 0.05 and p < 0.01, 
respectively.

OM TN AN NO3
--N pH PDANH4

+-N

CK	 480 ± 29a	 4.54 ± 0.02a	 695 ± 10a	 97.88 ± 0.42a	 259 ± 80ab	 4.01 ± 0.14a	 334 ± 18b	 99.03 ± 0.05a
NPK	 480 ± 57a	 4.27 ± 0.05b	 746 ± 34a	 97.90 ± 0.27a	 240 ± 10b	 3.68 ± 0.07b	 327 ± 31b	 98.98 ± 0.14a
MF80	 438 ± 28a	 3.81 ± 0.13c	 609 ± 24ab	 98.05 ± 0.05a	 233 ± 40b	 3.97 ± 0.02a	 332 ± 00b	 99.05 ± 0.09a
MF60	 453 ± 52a	 4.11 ± 0.02b	 656 ± 77a	 98.06 ± 0.17a	 291 ± 26a	 4.19 ± 0.01a	 389 ± 40a	 98.95 ± 0.06a
MF40	 306 ± 21b	 3.55 ± 0.03d	 468 ± 70b	 98.61 ± 0.32a	 243 ± 10b	 4.01 ± 0.10a	 312 ± 23b	 99.11 ± 0.03a

Table 3. Richness and diversity of nirK and nirS denitrifiers under different fertilization regime.
nirK

CK: No chemical fertilizer and green manure; NPK: chemical fertilizer alone; MF80: Chinese milk vetch plus 80% chemical fertilizer; MF60: 
Chinese milk vetch plus 60% chemical fertilizer; MF40: Chinese milk vetch plus 40% chemical fertilizer; OTUs: operational taxonomic units.
Different letters in the row indicate significant differences according to Duncan’s test (p < 0.05).

OTUs OTUsTreatment Shannon ShannonChao1 Chao1Coverage (%) Coverage (%)

nirS



398CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 80(3) JULY-SEPTEMBER 2020

Community structure of the denitrifiers under different fertilization regimes
Proteobacteria accounted for the largest proportion of the nirK denitrifier (57.7%-78.4%, data not shown). At the order 
level, most nirK denitrifiers were assigned to Rhizobiales (33%-54.7%) (Figure 2a). Combined application of green 

CK: No chemical fertilizer and green manure; NPK: chemical fertilizer alone; MF80: Chinese milk vetch plus 80% chemical fertilizer; MF60: 
Chinese milk vetch plus 60% chemical fertilizer; MF40: Chinese milk vetch plus 40% chemical fertilizer.

Figure 2. Compositional structures of nirK and nirS denitrifiers at order (a and c) and genus (b and d) level across 
different fertilization regimes.
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manure and reduced chemical fertilizer decreased the relative abundance of Rhizobiales compared with NPK treatment. 
Nitrosomonadales was another dominant order of nirK community. The abundance of Nitrosomonadales was significantly 
higher in the green manure treatments (20.4%-32.1%) than in CK and NPK treatment (< 5%). The dominant genera of 
nirK denitrifiers were Bradyrhizobium (28.8%-46.7%), Nitrosospira (3.4%-32.1%), and Mesorhizobium (2.0%-3.4%) 
(Figure 2b). Other genera included unclassified Proteobacteria (5.61%-9.53%) and unclassified Bradyrhizobiaceae 
(1.62%-3.58%). Compared with NPK treatment, combined application of green manure and reduced chemical fertilizer 
significantly increased the relative abundance of the genus Nitrosospira (p < 0.05) but decreased the abundance of 
unclassified Bradyrhizobiaceae (p < 0.05). For nirS denitrifiers, the dominant phylum was also Proteobacteria with 
the relative abundance of 15.01%-19.26% (data not shown). At the order level, most nirS denitrifiers were assigned 
to unclassified bacteria, and identified dominant nirS denitrifiers were Burkholderiales, Rhodocyclales and Rhizobiales 
(Figure 2c). At the genus level, most nirS denitrifiers were belonged to unclassified bacteria (66.95%-71.97%). The 
identified dominant nirS denitrifiers were Azospira and Bradyrhizobium. Unclassified Proteobacteria, unclassified 
Betaproteobacteria and unclassified Burkholderiaceae were also the dominant nirS denitrifier (Figure 2d). There were 
nonsignificant differences in the relative abundance of each genus among different fertilization regimes.
	 The PCoA analysis was performed to determine the variations in the community structures of nirK and nirS denitrifiers 
among different fertilization managements (Figure 3). Axis 1 and axis 2 explained 78.90% of the variation of nirK 
community. Green manure treatments (i.e. MF80, MF60 and MF40) were grouped together, while NPK and CK treatments 

CK: No chemical fertilizer and green manure; NPK: chemical fertilizer alone; MF80: Chinese milk vetch plus 80% chemical fertilizer; MF60: 
Chinese milk vetch plus 60% chemical fertilizer; MF40: Chinese milk vetch plus 40% chemical fertilizer. 

Figure 3. Principal coordinate analysis of community structures of nirK (a) and nirS (b) denitrifiers at the genus level.
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were grouped together (Figure 3a). These indicated that the incorporation of green manure had a strong effect on the 
variation in nirK community while the application rates of chemical fertilizer had little effect on nirK community. In 
contrast, nirS denitrifier community in all treatments were scattered, suggesting that both green manure and chemical 
fertilizer exert weak effect on the community structure of nirS denitrifier (Figure 3b). 

Environmental effect on the community structures of denitrifiers
Redundancy analysis (RDA) was used to determine the relationship between denitrifying community and the soil 
properties. The first two RDA axes together explained 54.51% of the total variation in the composition of nirK denitrifiers 
(Figure 4a). Soil OM (r2 = 0.623, p = 0.003), AN (r2 = 0.507, p = 0.01), pH (r2 = 0.661, p = 0.006) and PDA (r2 = 0.633, p 
= 0.005) significantly affected the community structure of nirK denitrifiers. Similarly, axis 1 and axis 2 explained 39.02% 
of the total variation in nirS composition (Figure 4b), but all soil factors had no significant effects on the community 
structure of nirS denitrifiers.

CK: No chemical fertilizer and green manure; NPK: chemical fertilizer alone; MF80: Chinese milk vetch plus 80% chemical fertilizer; MF60: 
Chinese milk vetch plus 60% chemical fertilizer; MF40: Chinese milk vetch plus 40% chemical fertilizer.

Figure 4. Redundancy analysis (RDA) of community structures of nirK (a) and nirS denitrifiers and soil variables.
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DISCUSSION

Fertilization regimes exhibited various effects on the population sizes of the denitrifiers in this study. In general, the 
abundances of nirK and nirS denitrifiers in soils with chemical fertilizer alone (NPK) were significantly higher than those 
in the green manure treatments (p < 0.05) (Figure 1). Furthermore, application rates of chemical fertilizer in the green 
manure treatments had significant effects on the abundance of nirS denitrifiers rather than that of nirK denitrifiers. Another 
interesting finding was that the abundance of nirK denitrifiers was significantly higher than that of nirS denitrifiers in all 
fertilization treatments, which was consistent with the result in a paddy soil by Chen et al (2010). Previous researchers 
reported that only one copy of nirK gene is observed in bacteria, whereas up to three nirS copies can be found in some 
bacterial strains (Jones et al., 2008). Therefore, in this study, the abundance of nirK denitrifiers would be even higher 
than that of nirS denitrifiers. However, higher abundance of nirS denitrifiers than that of nirK denitrifiers was observed in 
wheat-soybean rotation soils (Sun et al., 2015), in alkaline wheat soils (Yang et al., 2017) and in soybean-maize rotation 
soils (Yin et al., 2015). Paddy soil seems to possess a higher ratio of nirK/nirS, but it is not yet known how this might 
be related to the cultivation practice. Soil properties affected the abundance of nirS denitrifiers (Table 2). Soil pH was 
significantly positively correlated with nirS gene abundance (r2 = 0.580, p = 0.023), which was demonstrated previously 
(Hallin et al., 2009; Yang et al., 2017). However, soil properties had less effect on the abundance of nirK denitrifiers.
	 It was previously reported that the composition and diversity of the denitrifying bacteria were affected by fertilization 
regimes (Chen et al., 2010; Yin et al., 2015; Yang et al., 2017). In our study, a notable discovery was that the community 
composition and diversity of nirK and nirS denitrifiers responded differentially to the fertilization regimes. The principal 
coordinate analysis revealed that community structure of nirK denitrifiers clearly changed between CK, chemical fertilizer 
and green manure treatments (i.e., MF80, MF60 and MF40) (Figure 3a), suggesting significant effect of green manure 
addition on nirK denitrifiers and weaker influence of application rates of chemical fertilizer. The relatively small effect of 
fertilization regimes on the community structure of nirS denitrifiers was observed (Figure 3b). These findings demonstrate 
the differences between nirK and nirS denitrifiers in response to fertilization regimes and suggest that habitat selective 
forces as a result of the application of fertilizer are more important than the nutrient content (Yin et al., 2015). Previous 
researchers have observed that fertilization regimes influenced the community of nirK denitrifiers but not nirS denitrifiers 
(Wolsing and Priemé, 2004; Chen et al., 2010). Although nirK and nirS genes are functionally equivalent, they mostly 
belong to different bacterial strains (Zumft, 1997) and show different responses to environmental variations. The distinct 
behaviors of nirK and nirS denitrifiers may be explained by the niche differentiation between them (Enwall et al., 2010). It 
is tempting to explain the maintenance of two types of nitrite reductases over bacterial evolution by niche differentiation, 
which can provide insurance against competitive exclusion (Hallin et al., 2009).
	 Based on the Miseq sequencing analysis of nirK gene, the identified dominant genera among the different 
treatments were affiliated to Bradyrhizobium, Mesorhizobium, and Nitrosospira which belonged to Rhizobiales and 
Nitrosomonadales, respectively. Chen et al. (2010) and Tang et al. (2016) also reported that nirK denitrifiers were mostly 
related to Rhizobiales. Different fertilization regimes resulted in obvious variations in the abundances of nirK denitrifiers 
in the different treatments. In comparison with NPK treatment, green manure treatments resulted in a decrease in the 
relative abundance of Rhizobiales and an increase in Nitrosomonadales (Figure 2a). These results demonstrated that the 
community structure of nirK denitrifiers responded to the addition of green manure. The dominance of nirK denitrifiers 
like Rhizobiales and Nitrosomonadales in paddy soil might indicate that they play an important role in denitrification. 
Furthermore, there were obvious differences in the occurrence of nirK denitrifiers genera among the fertilization 
treatments. The relative abundances of Nitrosospira were higher in the green manure treatments than that in the CK and 
NPK treatment, and unclassified Bradyrhizobiaceae exhibited contrast trend. In contrast, nirS denitrifiers were relatively 
stable against fertilization because the relative abundance of nirS denitrifier at the order or genera levels were similar in 
all five treatments without a significant variation (Figures 2c and 2d). The majority of nirS denitrifiers were affiliated to 
the unclassified bacteria. In soils, nirS denitrifiers were not well amplified due to primer specificity problems (Katsuyama 
et al., 2008). A small proportion of the genera like Azospira and Bradyrhizobium were identified by Miseq sequencing and 
there were no significant differences in the relative abundance of nirS genera.
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	 The RDA analysis suggested that PDA significantly affected the community structure of nirK denitrifiers but not nirS 
denitrifiers. This might imply that PDA explained some of the variability in nirK composition. For nirK community, pH 
had a strong impact on the community composition among soils with different fertilization regimes and it was previously 
reported that soil pH was a dominant factor in regulating the microbial community composition (Enwall et al., 2005; Fierer 
and Jackson, 2006). The soil OM content was also a predominant factor influencing nirK denitrifiers. The transformation 
of total organic matter can supply nutrients and energy which could stimulate the growth of soil microbes including nirK 
denitrifiers (Alden et al., 2001), and moreover, organic C is also an important factor influencing denitrifiers since it acts 
as an electron donor.

CONCLUSIONS

Our study showed that the incorporation of green manure and reduced chemical fertilizer were beneficial to maintain 
soil N contents. The abundances of nirK and nirS denitrifiers in the soil amended with chemical fertilizer alone were 
significantly higher than those in the treatments of the combination of green manure and reduced chemical fertilizer. The 
application of green manure and reduced chemical fertilizer had a strong impact on the community structures of nirK 
denitrifiers. The potential denitrifying activity (PDA) had strong impact on the abundance and community structure of 
nirK denitrifiers. The results improve our understanding of nirK and nirS denitrifiers involved in the paddy soils amended 
with green manure and reduced chemical fertilizer. 
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