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ABSTRACT

One of the main problems of rice (Oryza sativa L.) cultivation is erratic germination and crop establishment; therefore, a 
pre-sowing ultrasonic seed treatment was studied to improve this situation. A pot experiment was conducted to investigate 
the effect of ultrasonic seed treatment on rice seedlings under waterlogging conditions. Two cultivars of rice seeds, 
‘Yuejingsimiao’ (YJSM) and ‘Yuxiangyouzhan’ (YXYZ), were treated with ultrasonic waves before being transferred 
to the pot. The ultrasonic treatment included seed treatments in the dry state (S1), wet state (S2), and a control (CK). 
The waterlogging treatment included three flooding levels, control (W0), 2.0-3.0 cm flooding (W1), and 3.0-4.0 cm 
flooding (W2). The seedling emergence rate for W1S2 was 35.07% to 64.39% higher than W1CK, while fresh weight 
for W2S2 increased by 54.21% to 89.98% compared with W2CK. Furthermore, W1S1 (11.74% to 15.02%) and W1S2 
(7.87% to 43.29%) also increased catalase activities compared with W1CK. Malondialdehyde (MDA) decreased by 
19.87% to 31.84% and 9.70% to 38.74% for YJSM and YXYZ, respectively. The results showed that under waterlogging 
conditions, wet seed under ultrasonic treatment significantly increased the seedling emergence rate. Both the wet and dry 
seed treatments improved seedling quality, antioxidant activity, but decreased the MDA content.
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INTRODUCTION

Water in a suitable irrigation system is required for plant growth because excessive flooding or submergence damages 
plants. An enzymatic defense mechanism, including peroxidase (POD) and catalase (CAT), is triggered to inhibit plants 
from reactive oxygen species (ROS) injury, apparently affecting the plant metabolism (Fernández et al., 2013). When 
plants are threatened by abiotic stresses, such as waterlogging, the defense mechanism has to scavenge free radicals, 
depress lipid peroxidation, and reduce malondialdehyde (MDA) production by counterattacking the cell membrane 
system (Luo et al., 2018).
 Poor field drainage and deep underground water lead to a low seedling emergence rate and even stunted rice. Research 
has previously shown that waterlogging has an impact on seed germination, seedling growth, and crop yield (Ghobadi et 
al., 2017). Flooding demonstrates slow gaseous diffusion and rapid oxygen expenditure by the rhizosphere microorganism; 
excess water limits the oxygen supply to the submerged tissues, resulting in plant damage (Nishiuchi et al., 2012). While 
roots face the danger of waterlogging, tolerant crop genotypes have a greater ability to grow than susceptible genotypes 
(Sairam et al., 2011). During submergence or various stress conditions, the accumulation of oxygen free radicals caused 
by stomatal closure functions in photosynthetic cells and limits CO2, thus inhibiting root growth (Srivastava et al., 2009).
 Seeds are a crucial material for crop propagation in the future; the loss of emergence ability and vigor causes crops to 
eventually reduce stand establishment in the field when seeds are in long-term or unsuitable storage (Groot et al., 2012; 
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Rissel et al., 2014; Wojtyla et al., 2016). Along with increasing ROS during storage, which is one of the main factors of 
seed declination, crops with poor germination and stand establishment suffer yield loss (Rissel et al., 2014). Seeds with 
proper moisture (technically dried) are stored after harvest, but their vigor decreases over time and inevitably age (Groot 
et al., 2015). Various seed treatment techniques have been chemically and mechanically used to promote seed longevity 
and seedling emergence and improve seed ability under stress or long-term storage (Du et al., 2019). 
 Ultrasound is widely used in physical extraction and helps improve plant growth. Therefore, it affects their biology in a 
complex manner without damaging plant molecules and cells, but promotes their biological synthesis (Leon et al., 2018). 
An ultrasonic seed pretreatment provides basic conditions for plant growth and has a positive impact on the electrical 
conductivity and physiological substances in seeds (Wang et al., 2012). In response to stress suffered by rice, yield, 
quality, and antioxidants were positively enhanced after seeds were subjected to ultrasound treatment (Rao et al., 2018). 
Germination rate and plant survival have been used in previous studies as characteristics of waterlogging tolerance in 
barley and its visible response to waterlogging (Miano et al., 2015). Although widely used in engineering, ultrasound is 
relatively less applied to agriculture; the ultrasonic treatment has been used to investigate crop growth such as in beans, 
chickpeas, peppers, and rice (Goussous et al., 2010; Rao et al., 2018). Therefore, it is hypothesized that the ultrasound 
technique improves the germination of seeds that lack vitality and plant regulation could be obtained; the subsequent 
impact of ultrasound on rice seedlings under waterlogging stress was studied.

MATERIALS AND METHODS

A pot experiment was conducted at the Experimental Research Farm (23°09’ N, 113°22’ E), College of Agriculture, 
South China Agricultural University, Guangzhou, China. Two rice (Oryza sativa L.) cultivars, ‘Yuejingsimiao’ (YJSM) 
and ‘Yuxiangyouzhan’ (YXYZ), were provided by the College of Agriculture, South China Agricultural University, 
and sown on 10 March 2018 under a double rice cropping system in South China. Ultrasound at 20 kHz, 220 W was 
used to directly treat the dried rice seeds in the ultrasonic seed processor (Guangzhou Xindongli Ultrasound Electronic 
Equipment, Guangzhou, China). Seeds were divided into three groups before sowing: seeds treated by ultrasonic waves 
in the dry state (S1), seeds treated by ultrasonic waves in the wet state (S2), and no treatment applied as a control (CK). 
Flooding treatments included irrigation after sowing with three levels of flooding: no flooding (W0), 2.0-3.0 cm flooding 
(W1), and 3.0-4.0 cm flooding (W2).
 After the treatment, rice seeds were carefully sown in plastic pots (31 cm diameter and 29 cm height) and grown in a 
phytotron at 27 °C/21 °C day/night under 1200 lx yellow light intensity and 75% humidity. The experimental soil contained 
21.03 g kg-1 organic matter, 0.75 g kg-1 total N, 0.73 g kg-1 total P, 18.23 g kg-1 total K, 63.72 mg kg-1 alkali hydrolyzed N, 
28.94 mg kg-1 effective P, and 47.61 mg kg-1 available K. Thirty-day-old seedlings were collected to determine seedling 
growth and physiological parameters, washed, and immediately stored at -80 °C until the biochemical analyses. 

Measurement of rice growth and SPAD values
The seedling emergence rate was determined on 26 March and a 10 × 10 cm area was chosen to count emerged seedlings 
as expressed by seedling emergence rate (%) = (number of emerged seedlings/total number of seeds) × 100. Seedlings 
were sampled on 10 April in three biological replicates to evaluate fresh weight (g), dry weight (g), plant height (cm), 
basal diameter (cm), and number of roots. To evaluate fresh weight, plants were weighed immediately after sampling 
and oven-dried at 80 °C for 48 h to obtain dry weight. Leaf chlorophyll fluorescence was measured with a chlorophyll 
fluorometer (SPAD-502 Plus v. 1.20; Konica Minolta, Chiyoda, Tokyo, Japan).

Antioxidant activity
Peroxidase (POD, EC1.11.1.7) activity was determined using the method indicated by Ashraf et al. (2017). The reaction 
mixture contained enzyme extract (50 μL), 1 mL 0.3% H2O2, 0.95 mL 0.2% guaiacol, and 1 mL 50 mmol L-1 pH 7.0 
phosphate buffer solution (PBS). The change in absorbance was read at 420 nm at 30-s intervals up to 2 min. Catalase 
(CAT, EC 1.11.1.6) activity was determined with the CAS assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China). One unit of CAT activity was estimated as the amount of enzyme that decomposes 1 μmol H2O2 at 405 nm s-1 in 1 
mg fresh tissue proteins.
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Malondialdehyde and soluble protein contents
Malondialdehyde (MDA) content was measured as described by Rao et al. (2018). Fresh leaves (0.5 g) from the control 
and treated plants were homogenized in 2 mL 20% (w/v) trichloroacetic acid (TCA). Afterward, 1.5 mL 20% TCA 
containing 0.5% (w/v) TBA and 100 μL 4% butylated hydroxytoluene (BHT) in ethanol was added to the aliquot (0.5 mL) 
of the supernatant. This was heated at 100 ºC for 30 min and quickly cooled in ice. The homogenate was centrifuged at 
3000 g for 15 min. After cooling the reaction mixture was measured at 450, 532 and 600 nm and the unit of MDA content 
was μmol g-1 FW.
 Soluble protein content was evaluated following the method described by Rao et al. (2018). Fresh leaves (0.5 g) 
were homogenized in 9 mL phosphate buffer at pH 7.8, centrifuged at 8000 rpm at 4 ºC for 15 min. Afterward, 100 μL 
supernatant was mixed with ultrapure water (900 μL) and Coomassie Brilliant Blue G250 reagent, and kept at 25 ºC after 
mixing for 20 min. Absorbance was tested at 595 nm.

Statistical analysis
The experiment was conducted using a completely randomized block design with three replicates of each treatment. Data 
collected were statistically analyzed by ANOVA with the Statistix 8 statistical software (Analytical Software, Tallahassee, 
Florida, USA). The differences among treatments were separated according to the least significant difference (LSD) test 
at P < 0.05. Multivariate analysis was preceded by MetaboAnalyst (Xia Lab, McGill University, Ste. Anne de Bellevue, 
Quebec, Canada; http://www.metaboanalyst.ca).

RESULTS

Effect of ultrasonic treatment on seedling emergence rate
The ultrasonic treatment significantly affected the seedling emergence rate under waterlogging stress in both cultivars 
(P < 0.05; Figure 1). For YJSM, there were significant differences between S2 and CK under W1 and W2, whereas 
nonsignificant differences were detected under W0. The seedling emergence rate for W1S2 was 63.49% higher than 
W1CK, while W2S2 was 39.39% higher than W2CK. A similar trend was observed in YXYZ in which S2 could 
significantly enhance the seedling emergence rate under W1 and W2; both W0S1 (9.33%) and W0S2 (14.22%) were 
higher than W0CK. The W1S2 treatment significantly enhanced the seedling emergence rate by 28.21% compared with 
W1CK, while W2S1 and W2S2 were 20.15% and 35.07% higher than in W2CK.

Error bars above means were the standard error of three replicates. Different letters over bars for a treatment were significant according to the 
LSD test (P < 0.05).
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, no 
ultrasonic treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.

Figure 1. Effect of ultrasonic and waterlogging treatments on seedling emergence rate.
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Ultrasonic treatment provoked regulation of seedling growth
Leaves under waterlogging stress were smaller than those in W0, but ultrasonic treatments notably improved total leaf 
area in both cultivars (Figure 2). The total leaf area of W0S1 and W0S2 improved by 29.09% and 37.41% in YJSM, 
respectively, and 14.59% and 18.58% in YXYZ, respectively. The improved situation showed that total leaf areas S1 and 
S2 improved under W1 and W2 in YJSM. Furthermore, when compared with W1CK, W1S1 was enhanced by 13.19% 
and W1S2 improved by 31.30% in YXYZ. The total leaf area of W2S1 increased by 13.48% compared with W2CK, but 
there was nonsignificant difference between W2S1 and W2CK. 
 The ultrasonic treatment of S1 markedly regulated seedling height under waterlogging stress in YJSM, but there 
was nonsignificant difference among ultrasonic treatments under waterlogging stress in YXYZ (P > 0.05) (Figure 3). 
Compared with W0CK, the height of W0S1 was 15.99% greater. The height in W1S1 and W1S2 significantly increased 
by 47.15% and 30.77%, respectively, compared with W1CK. Meanwhile, W2S1 and W2S2 were higher than W2CK and 
reached a significant level in YJSM. Seedling height in S1 and S2 was higher than in CK under either W1 or W2; however, 
this did not significantly differ from the ultrasonic treatment under either W1 or W2 in YXYZ. For example, W2S1 was 
13.31% higher than W2CK when W2S2 was 22.37% higher than W2CK.

Figure 2. Effect of ultrasonic and waterlogging treatments on seedling total leaf area.

Figure 3. Effect of ultrasonic and waterlogging treatments on seedling height.

Different letters in a column indicate differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, no 
ultrasonic treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.

Different letters in a column indicate differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, no 
ultrasonic treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.
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 Ultrasonic treatments significantly improved seedling basal diameter under waterlogging stress for both cultivars, 
and seedlings under W1 and W2 had a lower basal diameter than W0 (Figure 4). For YJSM, the basal diameter in W0S2 
increased by 25.12% compared with W0CK; however, W1S1 and W1S2 were 70.49% and 94.26% higher than W0CK, 
and a similar trend was observed in S1 and S2 under W2. For YXYZ, there was a 33.59% and 64.46% increase under 
W0S1 and W0S2, respectively, compared with W0CK. Otherwise, basal diameters were significantly wider in W2S1 and 
W2S2 than in W2CK.

Ultrasonic treatment improved seedling weight
Fresh and dry weight significantly increased with the ultrasonic treatments under waterlogging stress in both cultivars, 
and S1 under waterlogging stress had a greater ability to improve seedling weight (Table 1). For fresh weight, W0CK 
was 18.54% and 4.44% significantly lower than W0S1 and W0S2, respectively. In addition, values for W1S1 and W1S2 
increased by 43.40% and 39.71%, respectively, under low waterlogging stress. At the same time, W2CK had the lowest 
fresh weight and increased by 54.21% and 11.01% compared with W2S1 and W2S2, respectively. Similarly, dry weight 
under W0 and W2 waterlogging stress complied with fresh weight. The dry weight of W1S1 and W1S2 were 52.56% and 
36.89% higher, respectively, compared with W1CK.
 For YXYZ, the dry weight of W0S2 improved by 54.78%, while W1S1 (41.58%) and W1S2 (122.19%) were higher 
than W1CK. Fresh weight in the ultrasonic treatments under W0 and W1 performed similarly with dry weight, and W2S1 
dry weight was 89.98% significantly higher than W2CK.

Figure 4. Effect of ultrasonic and waterlogging treatments on seedling basal diameter.

Different letters in a column indicate differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, no 
ultrasonic treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.

Table 1. Effects of ultrasonic and waterlogging treatments on seedling weight.

Different letters in a column indicate significant differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm 
flooding; W2: 3.0-4.0 cm flooding; CK: control, no ultrasonic treatment; S1: ultrasonic waves in 
the dry state; S2: ultrasonic waves in the wet state.

W0 CK 0.55 ± 0.02b 0.083 ± 0.001b 0.56 ± 0.00b 0.057 ± 0.003b
 S1 0.65 ± 0.02a 0.095 ± 0.001a 0.59 ± 0.00b 0.057 ± 0.001b
 S2 0.57 ± 0.01b 0.081 ± 0.001b 0.66 ± 0.02a 0.088 ± 0.003a
W1 CK 0.34 ± 0.02b 0.054 ± 0.002c 0.25 ± 0.01c 0.026 ± 0.002c
 S1 0.48 ± 0.01a 0.083 ± 0.001a 0.38 ± 0.01b 0.037 ± 0.002b
 S2 0.47 ± 0.01a 0.074 ± 0.001b 0.47 ± 0.01a 0.058 ± 0.002a
W2 CK 0.32 ± 0.00c 0.040 ± 0.001c 0.13 ± 0.00c 0.019 ± 0.002b
 S1 0.50 ± 0.01a 0.078 ± 0.001a 0.34 ± 0.01a 0.037 ± 0.002a
 S2 0.36 ± 0.01b 0.065 ± 0.001b 0.23 ± 0.01b 0.023 ± 0.001b

Treatments Fresh weight Dry weight

YJSM

Fresh weight Dry weight

YXYZ

g g 
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Number of roots under ultrasonic treatment
Ultrasonic treatments improved the number of both white roots and total roots per unit seedling in both cultivars (Table 
2). The number of total roots under W0S1 and W0S2 increased 18.39% and 30.12% in YJSM, respectively, while W0S2 
was 17.65% higher than W0CK in YXYZ. Likewise, W1S1 significantly decreased by 9.81% compared with W1CK; 
however, W1S2 was 13.58% higher in YJSM. On the contrary, W1S1 improved by 21.40% compared with W1CK in 
YXYZ. The number of total roots for W2S1 was 20.57% and 31.65% higher, respectively, than for W2CK in both 
cultivars, but there was nonsignificant difference between W2S2 and W2CK in YXYZ. The number of white roots under 
W1S2 was 53.85% higher than W1CK in YJSM and 37.41% in YXYZ. Nonsignificant difference was observed between 
ultrasonic treatments under W2 waterlogging stress in YJSM; however, the number of white roots under W2S1 and W2S2 
increased by 22.90% and 42.75%, respectively, in YXYZ.

Effect of the ultrasonic treatment on SPAD values
The SPAD values for the ultrasonic treatments increased in both cultivars, and these reached significant differences 
under waterlogging stress for S1 and S2 in YJSM (Figure 5). The increasing trend was similar for YJSM; S1 and S2 
were significantly higher than CK under waterlogging treatments. For example, the increase in W1S1 and W1S2 was 
significant with values of 8.40% and 8.53%, respectively, compared with W1CK, while W2S1 and W2S2 increased 
23.55% and 20.59%, respectively, compared with W2CK. The SPAD value for YXYZ differed from ultrasonic treatments 
under waterlogging. The W0S1 treatment value was 8.26% compared with W0CK, while W2S1 and W2S2 improved by 
6.95% and 9.40%, respectively, compared with W2CK. 

Figure 5. Effect of ultrasonic and waterlogging treatments on SPAD value.

Different letters in a column indicate differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, no 
ultrasonic treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.

Table 2. Effects of ultrasonic and waterlogging treatments on the number of roots.

Different letters in a column indicate differences according to the LSD test (P < 0.05).
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm 
flooding; W2: 3.0-4.0 cm flooding; CK: control, no ultrasonic treatment; S1: ultrasonic waves in 
the dry state; S2: ultrasonic waves in the wet state.

W0 CK 3.67 ± 0.22a 6.92 ± 0.36b 5.39 ± 0.20ab 9.92 ± 0.22b
 S1 3.64 ± 0.07a 8.19 ± 0.30a 4.72 ± 0.15b 10.17 ± 0.36b
 S2 2.89 ± 0.18b 9.00 ± 0.25a 6.00 ± 0.29a 11.67 ± 0.22a
W1 CK 2.53 ± 0.12b 7.36 ± 0.07b 3.86 ± 0.27b 8.31 ± 0.19c
 S1 3.00 ± 0.14b 6.64 ± 0.22c 5.72 ± 0.15a 10.08 ± 0.21a
 S2 3.89 ± 0.18a 8.36 ± 0.07a 5.31 ± 0.19a 9.06 ± 0.24b
W2 CK 2.50 ± 0.14a 5.25 ± 0.14b 3.64 ± 0.22c 6.92 ± 0.46b
 S1 2.44 ± 0.15a 6.33 ± 0.22a 4.47 ± 0.12b 9.11 ± 0.18a
 S2 2.42 ± 0.13a 6.25 ± 0.14a 5.19 ± 0.10a 7.53 ± 0.24b

Treatments White roots Total roots

YJSM

White roots Total roots

YXYZ
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Ultrasound induced antioxidant responses
Significant increases in antioxidant enzyme activity were observed in ultrasonic treatments that were also affected by the 
degree of waterlogging stress (Table 3). The POD activity for W1S1 was the highest among W1CK, W1S1, and W1S2 
in both cultivars, and there was a similar trend in YJSM under W2. The POD activity for W0S1 and W0S2 increased by 
39.62% and 10.43%, respectively, compared with W0CK: the W1S1 treatment was 22.17% higher than W1CK for YJSM. 
Meanwhile, when comparing with W1CK, the W1S1 treatment significantly increased POD activity by 21.32% compared 
with W2CK and W2S2 was 52.52% higher in YXYZ. 
 There was nonsignificant difference in YJSM for CAT activity among W0CK, W0S1, and W0S2. On the contrary, CAT 
activity for W1S1 and W1S2 was 11.74% and 7.87% higher, respectively, compared with W1CK, whereas W2S1 and 
W2S2 had values of 18.49% and 26.37%, respectively, compared to W2CK. For YXYZ, S2 significantly differed from 
CK under W0 and was similarly coordinated with those under W2. Compared with W1CK, CAT activity was significantly 
enhanced for W1S1 and W1S2 by 15.02% and 43.29%, respectively (Table 3). 

Ultrasonic treatment positively affected osmoregulation
The MDA content also increased with the increasing degree of flooding. For the same flooding treatment, different 
ultrasonic treatments reduced MDA content and nonsignificant differences were observed between W0CK and W0S2 
for both cultivars (Figure 6). The MDA content of W1S1 was 19.87% lower than W1CK, and reductions of 25.83% and 
20.92% occurred under W2S1 and W2S2, respectively, for YJSM compared with W2CK. The MDA content for W1S1 
and W1S2 significantly decreased by 31.84% and 38.74%, respectively; similarly, W2S1 and W2S2 were lower than 
W2CK by 23.85% and 32.19%, respectively. 
 The ultrasonic treatments had a clear impact on the soluble protein content under waterlogging stress, especially for 
YXYZ (Figure 7). For YJSM, the soluble protein content of S2 significantly decreased by 2.34% and 3.39% under W0 and 
W1, respectively, compared with CK; however, W2S1 and W2S2 were higher than CK by 3.16% and 5.50%, respectively. 
When comparing with W0CK for YXYZ, contents in W0S1 increased by 31.83%, but there was nonsignificant difference 
between W0CK and W0S2. In addition, W1S1 was 37.10% and W1S2 was 57.10% higher than CK under W1. However, 
when compared with W2CK, W2S2 decreased by 8.84%.

Multivariate analysis
The correlations between dry weight per seedling and other studied parameters are shown in Table 4. There was a 
significant positive correlation between dry weight and seedling emergence rate, fresh weight, leaf area, and height 
in both cultivars. There was a significant positive correlation between dry weight and basal diameter in YJSM, and a 
significant negative correlation between dry weight and MDA content in YJSM. Likewise, seeding rate was significantly 
and positively correlated with dry weight for YXYZ. A significant positive correlation between dry weight and the number 
of total roots and white roots in YXYZ was found (Table 4).

Table 3. Effects of ultrasonic and waterlogging treatments on antioxidant enzyme activity.

Different letters in a column indicate significant differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; POD: peroxidase; CAT: catalase; W0: control, 
no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, no ultrasonic 
treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.

W0 CK 165.83 ± 7.20c 307.28 ± 7.97a 128.97 ± 4.58b 236.86 ± 6.94b
 S1 231.54 ± 1.46a 314.24 ± 6.51a 156.82 ± 5.68a 248.78 ± 7.54b
 S2 183.13 ± 3.40b 308.07 ± 4.16a 162.43 ± 3.64a 313.58 ± 13.66a
W1 CK 183.52 ± 6.24b 308.80 ± 1.79b 170.70 ± 5.41b 318.45 ± 8.82c
 S1 224.20 ± 10.98a 345.07 ± 5.25a 207.10 ± 5.92a 366.30 ± 12.44b
 S2 193.68 ± 2.74b 333.12 ± 2.43a 171.18 ± 4.00b 456.31 ± 14.43a
W2 CK 180.29 ± 5.32b 268.49 ± 1.95c 134.75 ± 4.93b 324.26 ± 3.24b
 S1 218.70 ± 8.99a 318.14 ± 7.95b 152.07 ± 5.84b 309.55 ± 7.37b
 S2 193.62 ± 3.58b 339.28 ± 5.82a 205.53 ± 6.86a 381.26 ± 8.28a

Treatments POD CAT

YJSM

POD CAT

YXYZ

U g-1 min-1 U mg-1 s-1 U g-1 min-1 U mg-1 s-1
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Figure 6. Effect of ultrasonic and waterlogging treatments on malondialdehyde (MDA) content.

Figure 7. Effect of ultrasonic and waterlogging treatments on soluble protein content.

Different letters in a column indicate differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, 
no ultrasonic treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.

Different letters in a column indicate differences according to the LSD test (P < 0.05). 
YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; W0: control, no flooding; W1: 2.0-3.0 cm flooding; W2: 3.0-4.0 cm flooding; CK: control, 
no ultrasonic treatment; S1: ultrasonic waves in the dry state; S2: ultrasonic waves in the wet state.

Table 4. Correlations between dry weight per seedling and studied parameters.

YJSM: Yuejingsimiao; YXYZ: Yuxiangyouzhan; POD: peroxidase; CAT: catalase; 
MDA: malondialdehyde.

Fresh weight 0.9228 0.0004 0.9463 0.0001
Seedling emergence rate 0.4930 0.0090 0.8811 0.0017
Leaf area 0.8392 0.0047 0.9355 0.0002
SPAD value 0.4911 0.1794 0.3986 0.2879
Height 0.9044 0.0008 0.8277 0.0059
Basal diameter 0.6952 0.0376 0.4179 0.2630
Number of total roots 0.6024 0.0860 0.6904 0.0395
Number of white roots 0.5894 0.0949 0.8853 0.0015
POD 0.5034 0.1671 -0.2029 0.6007
CAT 0.5430 0.1309 -0.1643 0.6727
MDA -0.8618 0.0000 -0.5657 0.1124
Soluble protein -0.4303 0.2476 0.3335 0.3805

Parameters YJSM P-Value YXYZ P-Value
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Figure 8. Correlations of the studied parameters. Correlation heatmap (a) and compounds correlated with dry weight (b). 

CAT: Catalase activity; TRN: number of total roots; SR: seedling emergence rate; WRN: number of white roots; SP: soluble protein content; 
POD: peroxidase; MDA: malondialdehyde content; TLA: total leaf area; BD: basal diameter; FW: fresh weight per seedling; DW: dry weight 
per seedling.

 In order to examine in depth the possible relationship between the studied parameters, a heatmap was created (Figure 
8a).  It was classified in two large groups, the MDA content and the other parameters; there was a significant negative 
correlation between these two groups. The heatmap also revealed correlations for dry weight, leaf area, soluble protein 
content, fresh weight, height, number of total (white) roots, and seedling emergence rate (Figure 8a). Furthermore, 
compounds are correlated with dry weight per seedling in Figure 8b. Fresh weight, height, SPAD values, basal diameter, 
and leaf area were the top five parameters that were strongly correlated with dry weight (Figure 8b).

DISCUSSION

In vivo and in vitro gas exchange (O2 and CO2) between plants and the underground environment could be obstructed by 
excess water under waterlogging conditions; the physiological mechanism was basically affected, resulting in growth 
disorders (Ashraf et al., 2017). Obstacles such as limited oxygen, severely restricted aerobic respiration, and loss of ATP 
for growth caused apoptosis and necrosis, leading to plant death. Membrane lipids were aggravated by the production and 
accumulation of H2O2, one of the oxygen free radicals that influences the regulation of plant growth (Chen et al., 2013). 
The impact of cavitation, thermal effect, and mechanical mass transfer are acceptable factors of ultrasound to stimulate 
crops even though the botanical mechanisms are intricate (Xie et al., 2009). 
 Ultrasound at lower doses over an average time could stimulate cell division and seedlings would still have a good 
quality. Its effectiveness depends on frequency and intensity (Machikowa et al., 2013). The S2 treatment enhanced 
the seedling emergence rate, leaf area, and basal diameter, thus improving seedling quality (Figures 1, 2, and 4). One 
possible explanation for this result is that ultrasonic waves going through the seeds modify the permeability of the cell 
wall and membrane by acoustic cavitation; this increases seed porosity beneficial for seed absorption and consumption 
of water and oxygen (Sirsi and Borden, 2012). Therefore, sufficient oxygen can be used by cell proliferation, thereby 
stimulating seedling growth.
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 When rice is subjected to biotic or abiotic stress, protective defenses are activated, including POD, CAT, and osmotic 
regulation in plants. The ROS has a dual effect on plants, whose excessive accumulation induces oxidative damage 
that leads to cell death as a side effect (Wang et al., 2015; Yan et al., 2017). In our study, we found that ultrasonic 
treatments increased POD and CAT activities under waterlogging stress, which provide an effective protection against the 
ROS (Table 3). The MDA, as a decomposition product of lipid peroxidation, disintegrates the cell membrane, damages 
functional molecules, and interferes with the metabolism. Studies have reported that MDA increased under atmospheric 
pressure, was reduced and resulted in a higher MDA content  for W0 than for W1 or W2 (Figure 6) (Xiong et al., 2013).
 The rational use of ultrasound contributes to extracting phenolic compounds, resulting in a strengthened antioxidant 
defense system to prevent H2O2-induced cell death (Yingngam et al., 2014). Seedling height, weight, and number of roots 
increased for S1 and S2 compared with the control (Figure 3, Tables 1 and 2), which was consistent with a previous study 
(Wang et al., 2012). It was reported that ultrasound helped to eliminate free radicals by increasing POD activity and soluble 
protein content, decreasing MDA content and electrolyte leakage, and eventually enhance seed vigor and plant quality 
(Chen et al., 2013). Ultrasonic waves contribute to plant growth, and this can change the physiological and biochemical 
aspects of seeds; they can activate antioxidant enzymes to resist various stresses (Teixeira Da Silva and Dobránszki, 2014). 
Furthermore, the ultrasonic treatment of seeds improves crop quality; it can be an essential practice to reduce the residues 
from chemical pesticides and fertilizers which has decreased rice yield in recent years (Chen et al., 2016).
 The present study showed that the ultrasonic treatment strengthened antioxidant activities and seedlings, resulting 
in strong resistance against waterlogging stress, which was associated with findings by Kong et al. (2017). There is 
high-power ultrasonic wave energy in plant organogenesis (Teixeira Da Silva and Dobránszki, 2014). Seedlings in the 
ultrasonic treatment had better seedling emergence rate, height, weight, and POD activity (Tables 1 and 3, Figures 1 and 
3). This could be due to the fact that, when treated by ultrasound at the appropriate frequency, the energy of the waves 
could be absorbed by the seeds. This could stimulate the cells to raise their enzymatic activities and change their molecular 
structure to soften the seed coat to efficiently absorb nutrients. The ultrasound treatment of seeds usually enhances the 
seedling emergence rate, promotes seedling growth, and can result in better rice quality and yield. 

CONCLUSIONS

The ultrasonic treatment of wet seeds significantly increased the seedling emergence rate under waterlogging stress. There 
were also significant effects on seedling quality and peroxidase and catalase activities. Improvement in the protective 
enzyme activity might decrease the damage caused under waterlogging conditions. 
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