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ABSTRACT

The evaluation of new forage genotypes under arid conditions would contribute to solving the feed shortage problem 
during the summer season in arid areas and identify potential candidates for particular breeding programs. The present 
study evaluated the yield and quality of five multi-cut pearl millet (Pennisetum glaucum [L.] R. Br.) genotypes (IP19586, 
IP19612, IP6105, IP13150, and Shandaweel-1) affected by three sowing dates (15 May, 1 June, and 15 June) during 
the 2017 and 2018 summer seasons in Alexandria, Egypt. Among the new genotypes, IP13150 maintained the desirable 
balance between both productivity and quality. In addition to its high DM yield (3.50 t ha-1), it was characterized by the 
highest crude protein (91.6 g kg-1) and N-free extract (500.5 g kg-1) contents, while it had the lowest fiber fractions. This 
was reflected on its organic matter digestibility (395.7 g kg-1), high gas production (24.5 mL g-1 OM), short-chain fatty 
acid production (47.4 Mm), microbial protein (47.8 g kg-1 OM), and the highest energy values among all the genotypes. 
Although DM yield of the local cv. Shandaweel-1 was moderate (3.2 t ha-1), it was inferior regarding all the tested 
quality attributes. Altering the sowing date exerted a limited effect on the studied parameters; early sowing on 15 May 
was superior to later sowing on 1 and 15 June. The superiority of the second cut over the first and third cuts in forage 
production highlights the success of pearl millet as a multi-cut crop in similar environments. 
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INTRODUCTION

Feed shortage is a major challenge for the expansion of livestock production to cover the increasing demand for meat 
and dairy products by the continuously growing population, especially in developing countries (Rai et al., 2012). There 
are many options to cover the gap between forage demand and supply, one of which is the adoption of high-yielding crop 
varieties (Hassan et al., 2014; Babiker et al., 2015). Millets are especially gaining popularity due to their high resilience 
to climate change effects and acceptable productivity and nutritional value (Jukanti et al., 2016). 
	 Pearl millet (Pennisetum glaucum [L.] R. Br.) is an annual, warm season crop belonging to the Poaceae family. It is 
drought- and heat-tolerant and has a considerable ability to grow and yield in poor, sandy, and saline soils under arid, 
hot, and dry climates; this is an advantage over other popular forage grasses in the region, such as fodder maize (Jukanti 
et al., 2016). It is also a hydrocyanic and prussic acid-free crop, which gives it nutritional superiority over sorghum and 
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Sudan grass (Hassan et al., 2014). However, it is still mostly cultivated for grain production in Asia and Sub-Saharan 
Africa (Babiker et al., 2015). There has been increased attention recently for pearl millet as a multi-cut forage crop for 
fresh feeding and silage production (Jukanti et al., 2016), especially in Brazil, the Middle East, and Central Asia (Rai et 
al., 2012). Intensive research has been conducted in the International Crops Research Institute for the Semi-Arid Tropics 
(ICRISAT) to develop new pearl millet lines and hybrids; however, they are focused on evaluating the grain yield and yield 
components of the new genotypes. Meanwhile, complete information on their forage potential is still lacking (Jukanti 
et al., 2016). Despite various breeding efforts to produce agronomical elite pearl millet genotypes, their adoption in arid 
regions is very limited (Divya et al., 2017). There is therefore a dire need to create a complete quantitative and qualitative 
profile of the new pearl millet genotypes to monitor their integration in the regional forage production systems. Pearl 
millet is characterized by its abundant phenotypic and genetic variability, which supports its effective use in breeding 
programs to develop high-yielding genotypes with specific adaptation to arid and semi-arid production systems in many 
parts of the world. Furthermore, as a climate-resilient crop, pearl millet has great potential as an excellent genomic 
resource to isolate candidate genes for tolerance to drought and heat stress (Serba et al., 2017). The evaluation of newly 
released genotypes in different regions of the world, especially those characterized by arid environments such as in the 
current study, is widely encouraged to facilitate the identification of potential parents for a particular genetic improvement 
program. Agronomic practices to maximize productivity and quality are still under review for fodder pearl millet. The 
sowing date is reported to have a significant impact on crop growth and development (Abd El-Lattief, 2011), which is then 
reflected on yield and quality (Radhouane, 2008). Accurate decision-making as to the sowing date is not only important 
to achieve the highest crop yield and quality but also to minimize  the risk of crop stand failure; this decreases overall 
farming practice costs by eliminating labor and re-sowing costs (Santos et al., 2017). Manipulating the sowing date is 
also an effective climate change adaptation strategy (Dharmarathna et al., 2014). The sowing date adjustment is crucial, 
especially for arid and semi-arid ecosystems, because it is directly related to the challenges of the global warming hazards 
these regions face (Zhang et al., 2019). 
	 Optimizing the use of any forage crop in livestock feeding requires an understanding not only of its yield and dry 
matter (DM) accumulation but also changes in its quality. The best forage crop is the one that maintains the balance 
between high productivity and optimum nutritional profile that improve animal performance. The chemical composition 
analysis of any given forage is essential to determine its nutritional value. However, to create a complete profile for a 
particular feedstuff, which truly demonstrates its nutritional value for the animal, a more precise feed evaluation technique 
should be adopted. In vitro techniques have been the most popular because they are easily applied, repeatable, and require 
few animals. Thus, the in vitro ruminal fermentation kinetics for gas production is widely used to evaluate the nutritional 
value of feeds (Aderinboye et al., 2016). Gas measurement is also useful to determine digestion kinetics of both soluble 
and insoluble fractions of feedstuffs. It also closely indicates the production of short chain fatty acids (Blümmel et al., 
1999). A better understanding of the changes in yield potential and nutritional value among different cuts of multi-cut 
forages is needed by the farmer to estimate their importance for livestock nutrition. 
	 The  aim of the present study was to quantify the variations in productivity and quality in terms of nutritional components, 
ruminal fermentation, and in vitro nutrient degradability of multiple cuts of four newly introduced pearl millet genotypes 
compared with a local cultivar when grown on different sowing dates in the Egyptian agricultural system. 

MATERIALS AND METHODS

Experimental location
Field trials were carried out at the Agricultural Research Station of the Faculty of Agriculture, Alexandria University, 
Alexandria, Northern Egypt, in the 2017 and 2018 summer seasons. The experimental location is characterized by its hot 
and dry climate with zero precipitation during the summer growing season (from May to September). The mean temperature 
during the summer months of the two experimental seasons (2017 and 2018) is shown in Table 1. Temperature data were 
measured at the El Nouzha Airport meteorological station (31º12’ N, 29º57’ E; -2 m a.s.l.), Alexandria, Egypt. The soil of the 
experimental location is sandy loam, Fluvents, and composed of 55.5%, 29.0%, and 15.5% sand, silt, and clay, respectively. 
The pH was approximately 8.29, electrical conductivity 1.33 dS m-1, and 8.10% CaCO3. The nutrient composition of the 
top 25 cm of the soil was 2.04% organic matter and 100, 75, and 450 mg kg-1 available N, P, and K, respectively.
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Design, treatments, and management
Variations in productivity, nutrient composition, in vitro nutrient degradability, and ruminal gas production of three 
successive cuts of four new pearl millet (Pennisetum glaucum [L.] R. Br.) genotypes (IP19586, IP19612, IP6105, and 
IP13150) compared with the local cv. Shandaweel-1, were studied on three different sowing dates (15 May, 1 June, and 
15 June 2017 and 2018). The first cut occurred at 45 d after sowing (DAS), equivalent to the vegetative growth stage,  and 
a 30-d interval was left between each of the two following cuts up to the third cut. Seeds of the four new genotypes under 
study were obtained from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). A split-split 
plot experimental design with three replicates was adopted in which the main plots were the three sowing dates, sub-plots 
were the cuts, and the sub-subplots were the five tested pearl millet genotypes. 
	 The experimental plot consisted of four ridges with 60 cm spacing for a total area of 3.0 × 2.4 m. Seeds were drilled 
in rows on two sides of the ridge with the 48 kg ha-1 forage seeding rate recommended by the Egyptian Ministry of 
Agriculture and Land Reclamation. Based on soil analysis and the current recommendations for pearl millet production 
in the area, 120 kg N ha-1 N fertilizer was applied as ammonium nitrate (33.5% N) divided in three equal doses; the 
first dose was applied as side-banded between the ridges at sowing, and the second and third doses were applied as top 
dressing directly after the first and second cuts, respectively. A single 200 kg ha-1 P dose was added at seedbed preparation 
as monocalcium phosphate (15.5% P2O5). Due to the zero precipitation in the summer seasons, agriculture in the region 
mainly depends on irrigation. Thus, all plots received equal amounts of water (applied as surface irrigation) at equal 
intervals to prevent induced drought stress. Manual weeding was used when necessary.

Sampling and analytical procedures
At forage harvesting, plots were cut with a sickle 7 cm aboveground and total fresh yield for each cut and plot was weighed. 
A 1 kg representative fresh matter sub-sample was taken from each experimental plot, put in paper bags, dried at 60 ºC 
until constant weight was reached (approximately 72 h), and dry matter (DM) content per plot was determined (g kg-1). Dry 
matter yield (DMY) was estimated from the values of fresh yield and DM content (t ha-1). Dried sub-samples were milled 
to a 1-mm particle size in preparation for the analytical procedure. The technique proposed by Van Soest et al. (1991) was 
used to sequentially determine neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) 
with a semiautomatic ANKOM220 fiber analyzer (ANKOM Technology, Macedon, New York, USA). Samples were burned 
at 550 ºC for 3 h (AOAC, 2012) in a muffle oven to determine the crude ash (CA) content. Organic matter (OM), ether 
extract (EE), and crude fiber (CF) contents were also determined as described by the AOAC (2012). When the N content 
was determined by the Kjeldahl procedure (AOAC, 2012), crude protein (CP) was calculated as N × 6.25.
	 The Hohenheim gas test proposed by Menke and Steingass (1988) was used to measure in vitro gas production (GP). 
Cumulative gas was expressed as milliliter of gas produced per 200 mg DM and corrected for blanks. Gas (Y) at time (t) 
was fitted to the exponential model of Orskov and McDonald (1979) as 

Gas (Y) = a + b (1-exp-ct),
where a is GP from the immediately soluble fraction, b is GP from the insoluble fraction, c is the GP rate constant for the 
insoluble fraction (b), and t is incubation time. 

15 May	 1st 	 38.89	 26.11	 40.00	 25.00
	 2nd 	 38.89	 27.22	 38.89	 27.22
	 3rd 	 32.78	 27.22	 32.22	 27.22

1 June	 1st 	 38.89	 36.11	 40.00	 25.00
	 2nd 	 38.89	 27.22	 38.89	 27.22
	 3rd 	 32.78	 27.22	 32.22	 27.22

15 June	 1st 	 38.89	 27.22	 38.89	 27.22
	 2nd 	 32.78	 27.22	 32.22	 27.22
	 3rd 	 36.11	 36.11	 33.89	 27.22

Table 1. Mean temperature accumulation prior to each cut for each sowing date of the 2017 and 2018 growing seasons.

Mean temperature accumulation 
during 2017 (°C)

Mean temperature accumulation 
during 2018 (°C)

Maximum MaximumCut Minimum MinimumSowing date
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	 Metabolizable energy (ME), net energy of lactation (NEL), and OM digestibility (OMD) were calculated from the 
amount of gas produced after incubation for 24 h with the supplementary analysis of CP, CA, and EE expressed as g kg-1 
DM (Menke and Steingass, 1988). Short chain fatty acids (SCFA) were calculated according to Getachew et al. (2002) 
after which total digestible nutrient (TDN) value was calculated from the ME value (NRC, 1989). Finally, microbial 
protein (MP) was calculated as 19.3 g microbial N kg-1 OM (Czerkawski, 1986). Calculations were 

ME (MJ kg-1 DM) = 2.20 + 0.1357 × GP + 0.0057 × CP + 0.000286 × (EE)2,
NEL (MJ kg-1 DM) = 0.0960 × GP + 0.0038 × CP + 0.000173 × (EE)2 + 0.54,

OMD (%) = 14.88 + 0.889 GP + 0.45 CP + 0.0651 CA,
SCFA (mM) = (-0.00425 + 0.0222 × GP) × 100, and TDN (%) = (ME (Mcal kg-1 DM) + 0.45)/0.0445309.

Statistical procedures
The ANOVA test was performed with the Proc GLM of SAS 9.4 (SAS Institute, Cary, North Carolina, USA) for the 
response variables of fresh forage yield, DMY, DM, NDF, ADF, ADL, CP, N-free extract (NFE), OMD, TDN, ME, NEL, 
GP, MP, and SCFA. After running the statistical analysis separately for the two experimental years, the homogeneity 
of variance error was determined according to Hartley’s test (Winer et al., 1971);  it was homogeneous and data were 
therefore presented in a combined analysis for the two years. The response variables (V) under study were analyzed 
according to the following model with only replicates considered random: 

Vijkl = μ + Ri + SDj + Ri × SDj + Ck + SDj × Ck + Ri × SDj × Ck + Gl + SDj × Gl + Ck × Gl + SDj × Ck × Gl + eijkl,
where μ is the overall mean, Ri is the replicate effect (i = 1, 2, 3), SDj is the sowing date effect (j = 1, 2, 3), Ri × SDj is 
the experimental error “a”, Ck is the cut effect (k = 1, 2, 3), Gl is the genotype effect (l = 1, 2, 3, 4, 5), Ri × SDj × Ck is the 
experimental error “b”, and eijkl is the experimental error “c”.
	 Significance was declared at P < 0.05 and means were compared by the least significant difference (LSD) test.

RESULTS

Forage yield and nutrient composition
The ANOVA test revealed that fresh forage yield, DMY, DM, NDF, ADF, ADL, CP, and NFE were significantly affected 
by cut and genotype (P < 0.01), while only the DM content was significantly variable among sowing dates (P < 0.05). In 
addition, sowing date × cut (SD × C) significantly affected fresh forage yield, DMY, and DM (P < 0.01), whereas SD 
× genotype (SD × G) significantly affected CP and NFE and C × G significantly affected fiber fractions, CP, and NFE 
(P < 0.01). Only the lignin content was significantly affected by the three-way SD × C × G interaction (P < 0.01). 
	 Regarding the significant variations among the five tested genotypes for fresh forage yield, the four genotypes 
IP19586, IP6105, IP13150, and ‘Shandaweel-1’ produced the highest significant values for fresh yield with 24.3, 
22.0, 22.4, and 21.2 t ha-1, respectively (Table 2). The lowest significant fresh forage yield was a character of IP19612 
with18.1 t ha-1. Despite the acceptable amount of fresh forage (21.2 t ha-1) produced by the local genotype ‘Shandaweel-1’, 
it was characterized by the least significant amount of accumulated DM (149.9 g kg-1). The highest significant DM 
accumulation was a character of IP19586, IP6105, and IP13150. Similar to fresh yield, DMY means (Table 2) revealed 
that genotype IP19586 produced the highest significant amount of DMY (3.82 t ha-1), which was not significantly different 
from IP13150 (3.50 t ha-1), while IP19612 was significantly lower with 2.74 t ha-1 DMY.

Table 2. Variations in fresh forage yield, dry matter content, and dry matter yield among genotypes combined for the 
2017 and 2018 growing seasons.

	 t ha-1 	  g kg-1  	 t ha-1 
IP19586	 24.3a	 157.2a	 3.82a
IP19612	 18.1b	 151.4b	 2.74c
IP6105	 22.0a	 156.5a	 3.44b
IP13150	 22.4a	 156.1a	 3.50ab
Shandaweel-1	 21.2a	 149.9c	 3.18b

Fresh forage yield

Means followed by different lowercase letters in the same column for each studied parameter are 
significantly different according to the LSD test at 0.05 level of probability. 

Genotype Dry matter content Dry matter yield
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	 Sowing on 15 May and 1 June produced similar fresh forage yield from the three tested cuts, while sowing on 15 June 
significantly decreased the fresh forage yield of the second and third cuts (Table 3). The least significant yield resulted 
from the third cut when sowing was on 15 June (12.7 t ha-1), while the highest significant yield was 25.6 t ha-1 for the first 
cut at early sowing (15 May). The combined effect of sowing date and cut on DM accumulation was different from its 
effect on forage yield (Table 3). When sowing was on 15 May or 1 June, the first cut accumulated the highest amount of 
DM with 173.2 and 178.0 g kg-1, respectively, which gradually decreased until the third cut. On the contrary, with late 
sowing on 15 June, DM accumulation gradually increased from the first cut (144.1 g kg-1) to the third cut (183.9 g kg-1). 
Thus, the first and second cuts were superior to the third cut for DM accumulation with early and intermediate sowing, 
while the third cut was superior with late sowing. In addition to the variations in the direction of the response, the variable 
magnitude also contributed to the significant interaction. The decrease in DM accumulation from the first to third cuts 
reached 24.0% and 32.0% when sowing was on 15 May and 1 June, respectively. Meanwhile, DM accumulation increased 
by 27.6% from the first to the third cuts of millet sown on 15 June. The differences in the response of fresh yield and DM 
contents to the C × SD interaction were manifested on the DMY response (Table 3) in which the first cut produced the 
highest significant DMY with 4.44, 3.97, and 3.49 t ha-1 for the three sowing dates, respectively. Meanwhile, sowing on 
15 May resulted in the highest significant DMY with values of 4.44, 3.05, and 3.07 t ha-1 for the first, second, and third 
cuts, respectively.
	 The significant variations in the nutritional components among the tested genotypes greatly depended on the cut. 
Means in Table 4 illustrate that the second cut was usually characterized by better quality than the first and third cuts in 
terms of lower NDF and ADF contents and higher CP content. The third cut was characterized by moderate NDF, ADF, 
and CP contents, while the values of the three nutritional components were significantly higher for the first cut. Mean 
NDF content was 661.7, 628.7, and 651.7 g kg-1 for the first, second, and third cuts, respectively, while mean ADF content 
was 345.4, 320.1, and 329.2 g kg-1 for the three cuts, respectively. On the contrary, mean CP content reached 103.0 g 
kg-1 for the second cut, which was approximately 53.24% and 10.83% higher than the mean CP contents of the first and 
third cuts, respectively. Table 4 clearly shows that the genotypes IP19612 and ‘Shandaweel-1’ were characterized by the 
highest significant fiber fractions with values of 660.8 and 670.9 g NDF kg-1 and 341.4 and 347.7 g ADF kg-1 as the mean 
of the three cuts for genotypes IP19612 and ‘Shandaweel-1’, respectively. Genotypes IP19612, ‘Shandaweel-1’, and 
IP6105 produced the lowest significant CP content with means of 85.3, 77.8, and 86.9 g kg-1, respectively. Meanwhile, the 
highest significant CP content was a character of IP19586 and IP13150 with values of 94.6 and 93.9 g kg-1, respectively. 	

t ha-1 g kg-1 t ha-1

1st	 25.61aA	 22.31aA	 24.23aA	 173.2aA	 178.0aA	 144.1cB	 4.44aA	 3.97aAB	 3.49aB
2nd	 20.22aA	 20.08aA	 15.30bA	 150.7bA	 146.8bA	 158.7bA	 3.05bA	 2.95bAB	 2.43bB
3rd	 23.31aA	 18.80aAB	 12.74bB	 131.7cB	 121.1cB	 183.9aA	 3.07bA	 2.28bB	 2.34bB

Cut

Table 3. Effect of the Sowing date × Cut interaction on the variations in fresh forage yield, dry matter content, and dry 
matter yield combined for the 2017 and 2018 growing seasons.

Means followed by different lowercase letters in the same column and/or different uppercase letters in the same row for each studied parameter 
are significantly different according to the LSD test at 0.05 level of probability.

1 June

Fresh forage yield

15 May 15 June 1 June

Dry matter content

15 May 15 June 1 June

Dry matter yield

15 May 15 June

g kg-1 g kg-1 g kg-1 g kg-1

IP19586	 644.7bA	 619.3bB	 644.0bA	 338.3bA	 305.2bC	 313.1bB	 70.7aC	 113.3aA	 99.7aB	 523.8bA	 480.8aB	 469.5aB
IP19612	 682.2aA	 642.6aC	 657.5bB	 356.9aA	 327.0aB	 340.2aA	 61.2bC	 104.4bA	 90.3bB	 508.6cA	 448.3bC	 471.0aB
IP6105	 647.2bA	 623.8abB	 646.0bA	 333.6bA	 325.4aAB	 321.1bB	 65.8bC	 102.3bA	 92.7bB	 519.9bA	 453.2bB	 468.9aB
IP13150	 646.7bA	 616.0bC	 627.6cB	 339.1bA	 311.8bB	 318.2bB	 73.3aC	 110.0aA	 98.5aB	 543.8aA	 473.7aB	 474.0aB
Shandaweel-1	 687.8aA	 641.7aB	 683.3aA	 358.9aA	 331.0aB	 353.3aA	 65.0bC	 84.9cA	 83.4cA	 495.2cA	 443.1bC	 477.2aB

Genotype

Table 4. Effect of the Cut × Genotype interaction on the variations in neutral detergent fiber (NDF), acid detergent fiber 
(ADF), crude protein (CP), and N free extract (NFE) contents combined for the for 2017 and 2018 growing seasons.

Means followed by different lowercase letters in the same column and/or different uppercase letters in the same row for each studied parameter 
are significantly different according to the LSD test at 0.05 level of probability.

NDF

1st Cut 2nd Cut 3rd Cut

ADF

1st Cut 2nd Cut 3rd Cut

CP

1st Cut 2nd Cut 3rd Cut

NFE

1st Cut 2nd Cut 3rd Cut
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	 Both genotypes were also characterized by their low NDF and ADF contents, highlighting their superior nutritional 
composition. The means for NFE illustrated that the first cut was usually characterized by the highest significant amount 
of NFE (518.3 g kg-1 mean) against means of 459.8 and 472.1 g kg-1 for the second and third cuts, respectively (Table 
4). Genotype IP13150 produced the highest significant NFE for the first cut (543.8 g kg-1); genotypes IP13150 and 
IP19586 were superior to the other genotypes for NFE in the second cut with 473.7 and 480.8 g kg-1, respectively, while 
nonsignificant variations were detected among the tested genotypes for the third cut.
	 Both CP and NFE varied with the G × SD interaction (Table 5). Sowing on 15 May and/or 1 June produced the 
highest significant CP content, while delaying sowing until 15 June significantly reduced the CP content for most tested 
genotypes. The opposite was reported for the variations in NFE between sowing dates with late sowing on 15 June 
produced the highest significant NFE content for all genotypes. Similar to the previously reported results, genotype 
IP13150 was generally superior to the other tested genotypes regarding both the CP and NFE contents, while IP19612 and 
‘Shandaweel-1’ were inferior for both nutritional components. 
	 Among all the tested nutritive components, only the ADL content was significantly affected by the three-way interaction 
between the three studied factors (Table 6). At each sowing date and for all genotypes, the first cut was characterized by 
the lowest significant lignin content compared with the second and third cuts, except for the first cut of ‘Shandaweel-1’ 
sown on 1 June. Although the direction of the effects was consistent for ADL, remarkable shifts in the magnitude of the 
variation were observed, which contributed to the significant interaction. The increase in the ADL content from the first 
to  third cuts was 37.74%, 6.33%, and 35.65% for the three sowing dates, respectively. Moreover, it was observed that the 
later the sowing, the higher the ADL content from each cut. When the genotype IP13150 was sown early on 15 May, it 
produced a significantly low lignin content compared with sowing on 1 and 15 June. 

In vitro nutrient degradability and ruminal gas production
The ANOVA test revealed that all the studied parameters varied significantly among the tested genotypes, while significant 
variations between the cuts were only detected for energy measurements (ME and NEL), OMD, and TDN. However, the 
effect of the sowing date was only clear in the significant three-way interaction for OMD and TDN. 

g kg-1 g kg-1 g kg-1

IP19586	 33.7	 44.6	 41.6	 35.9	 44.9	 44.5	 41.5	 49.6	 55.2
IP19612	 36.6	 47.4	 50.2	 34.6	 36.4	 38.0	 43.8	 57.2	 67.3
IP6105	 30.0	 40.7	 52.9	 36.8	 35.1	 39.0	 46.5	 66.1	 67.4
IP13150	 29.4	 40.9	 38.7	 44.3	 51.4	 43.7	 44.9	 47.1	 56.3
Shandaweel-1	 37.5	 44.9	 46.9	 47.3	 47.2	 36.3	 46.6	 46.1	 56.7

LSD0.05					     3.0

Genotype

Table 6. Effect of the Sowing date × Cut × Genotype interaction on the variations in acid detergent lignin (ADL) content 
combined for the 2017 and 2018 growing seasons.

2nd Cut

15 May

1st Cut 3rd Cut 2nd Cut

1 June

1st Cut 3rd Cut 2nd Cut

15 June

1st Cut 3rd Cut

 
IP19586	 101.4aA	 91.9bB	 80.4aC	 470.8bC	 486.9aB	 516.4aA
IP19612	  77.3bB	 93.8bA	 72.6bB	 479.4bB	 475.3bB	 493.1bA
IP6105	 101.0aA	 93.0bB	 79.9aC	 454.1cC	 474.9bB	 513.0aA
IP13150	  94.5aA	 100.8aA	 79.5aB	 492.3aB	 490.8aB	 518.4aA
Shandaweel-1	  79.2bB	 89.8bA	 72.5bB	 477.1bB	 479.4bB	 485.0bA

Table 5. Effect of the Sowing date × Genotype interaction on the variations in crude protein (CP) and nitrogen-free 
extract (NFE) contents combined for the 2017 and 2018 growing seasons.

Means followed by different lowercase letters in the same column and/or different uppercase letters in the same row 
for each studied parameter are significantly different according to the LSD test at 0.05 level of probability.

Genotype 1 June

CP

15 May 15 June 1 June

NFE

15 May 15 June
g kg-1 g kg-1
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	 Tracking the variations in OMD among the tested genotypes as affected by the SD × C interaction revealed that an 
almost consistent response was achieved (Table 7). Only the superior genotype IP13150 had a significantly lower third 
cut OMD with early sowing (15 May), while the inferior genotype IP19612 had the lowest OMD values for the first cut 
when sown on 1 June. The highest OMD values for all cuts of all tested genotypes were usually achieved with sowing on 
15 May with means of 418.7, 432.7, and 416.1 g kg-1 for the first, second, and third cuts, respectively. Meanwhile, late 
sowing on 15 June had higher OMD values for all cuts and genotypes than sowing on 1 June. Mean OMD values for all 
genotypes reached 319.9, 346.64, and 345.2 g kg-1 when sown on 1 June and 366.8, 389.2, and 384.4 g kg-1 when sown on 
15 June for the three cuts, respectively. 
	 Similarly, a trend was observed for TDN as affected by the three-way interaction (Table 8). The highest significant 
TDN value was 421.7 g kg-1 reported for the first cut of IP19612 sown on 15 May, while the lowest significant value 
was 321.7 g kg-1 for the second cut of ‘Shandaweel-1’ sown on 1 June, showing a maximum difference of 10% in TDN 
data. Nonsignificant variations between the three tested cuts were observed for the same sowing date, while variations 
between sowing dates were more pronounced. Similar to the OMD values, early sowing on 15 May resulted in the best 
TDN values for all cuts with means of 411.0, 406.8, and 397.4 g kg-1 for the first, second, and third cuts, respectively. 
This was followed by late sowing on 15 June with mean TDN values of 375.1, 381.9, and 378.5 g kg-1 for the three cuts, 
respectively. However, the lowest TDN values were produced when the genotypes were sown on 1 June with means of 
329.5, 336.5, and 341.1 g kg-1 for the three cuts, respectively. 
	 Means of energy measurements (ME and NEL) for the three cuts of the five evaluated genotypes are shown in Table 9. 
Genotype IP13150 produced the highest significant amount of ME with values of 5.683, 5.442, and 5.210 MJ kg-1 for the 
first, second, and third cuts, respectively. The other four tested genotypes produced lower ME values, and ‘Shandaweel-1’ 
was especially lower for the second and third cuts with 4.831 and 4.709 MJ ME kg-1, respectively. Regarding the variations 
between cuts, an inconsistent direction was observed, which might have contributed to the significant interaction. The 
second and  third cuts of IP19586 produced higher significant ME values than the first cut, whereas the first cut of IP13150 
and ‘Shandaweel-1’ produced higher ME values than the second and third cuts of both genotypes. The variation in the 
three cuts was not significant for genotypes IP19612 and IP6105. Similarly, the NEL production by ‘Shandaweel-1’ was 
the least significant among all the genotypes with 2.248, 2.319, and 2.390 MJ NEL kg-1 for the three cuts, respectively. On 
the contrary, IP13150 was superior for the first cut (2.790 MJ kg-1) and not significantly different from the other genotypes 
for the second and third cuts. Inconsistent variations between the three cuts for the five tested genotypes were reported, 
but variations had little biological impact. 
	 Microbial protein (MP), GP, and SCFA only varied significantly among the five evaluated genotypes. Means displayed 
in Table 10 reveal the superiority of IP13150 and IP6105 for MP with values of 47.80 and 47.44 g kg-1 OM, respectively. 
Similarly, the two genotypes produced the highest significant amount of gas with 24.53 and 24.19 mL g-1, respectively, 
while the lowest GP was reported for the local genotype Shandaweel-1 (19.53 mL g-1). Means of SCFA of the five studied 
genotypes highlight the superiority of genotypes IP13150 and IP6105 with 47.4 and 46.6 mM, respectively, compared 
with  42.9 mM for ‘Shandaweel-1’. 

g kg-1 g kg-1 g kg-1

IP19586	 420.8	 412.3	 447.8	 320.2	 346.2	 360.8	 325.5	 369.3	 379.1
IP19612	 428.5	 440.6	 427.3	 304.7	 361.7	 340.9	 355.1	 383.7	 382.7
IP6105	 405.9	 432.7	 410.6	 330.2	 359.1	 342.7	 361.6	 411.3	 411.3
IP13150	 437.7	 463.1	 387.5	 323.8	 353.8	 337.3	 430.0	 417.0	 411.3
Shandaweel-1	 400.7	 414.8	 407.5	 320.6	 312.4	 344.3	 361.8	 364.5	 337.8

LSD0.05					     57.0

Genotype

Table 7. Effect of the Sowing date × Cut × Genotype interaction on the variations in organic matter digestibility (OMD) 
combined for the 2017 and 2018 growing seasons.

2nd Cut

15 May

1st Cut 3rd Cut 2nd Cut

1 June

1st Cut 3rd Cut 2nd Cut

15 June

1st Cut 3rd Cut
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DISCUSSION

Forage yield and nutrient composition
An accurate evaluation of the multiple cuts of new pearl millet genotypes compared with the local cultivar, as 
affected by the different sowing dates, would support their integration in the forage production sector in the Egyptian 
agricultural system.
	 Altering the sowing date had little effect on yield and DM content of the tested genotypes, and it highly depended on 
the cut. The highest significant yield was from the first cut of the early sown crop (15 May), while the least significant 
yield was from the third cut of the late sown crop (15 June). Abd El-Lattief (2011) pointed out that 15 May was the 
optimum sowing date in Upper Egypt for the best pearl millet productivity compared with earlier and later dates. Soler 
et al. (2008) suggested photoperiod and water availability as the main determining factors for the effect of sowing date 
on pearl millet biomass yield, especially in rainfed farming contexts. The present study depended on a homogeneous 
irrigation schedule for all the treatments, which eliminated the water availability factor and supported the assumption 
of the photoperiod effect. According to Craufurd and Bidinger (1988), the duration of the vegetative growth stage is a 
main determinant of pearl millet yield. Given that pearl millet is a short-day crop sensitive to the photoperiod, progress 

g kg-1 g kg-1 g kg-1

IP19586	 414.4	 427.1	 419.6	 327.5	 340.8	 353.5	 336.0	 364.0	 371.4
IP19612	 421.7	 410.7	 408.2	 323.1	 340.2	 340.5	 361.6	 376.9	 375.2
IP6105	 403.5	 407.0	 383.7	 334.8	 347.0	 342.4	 370.5	 400.5	 400.1
IP13150	 410.7	 393.9	 379.0	 337.6	 333.0	 332.1	 421.5	 404.2	 398.8
Shandaweel-1	 404.9	 395.5	 396.7	 324.3	 321.7	 337.2	 385.8	 363.8	 347.1

LSD0.05					     76.0

Genotype

Table 8. Effect of the Sowing date × Cut × Genotype interaction on the variations in total digestible nutrients (TDN) 
combined for the 2017 and 2018 growing seasons.

2nd Cut

15 May

1st Cut 3rd Cut 2nd Cut

1 June

1st Cut 3rd Cut 2nd Cut

15 June

1st Cut 3rd Cut

 
IP19586	 4.812bB	 5.147bA	 5.026bA	 2.586bA	 2.622aA	 2.678aA
IP19612	 4.989bA	 5.121bA	 5.097bA	 2.311cB	 2.603aA	 2.586aA
IP6105	 5.003bA	 5.287bA	 5.112bA	 2.521bB	 2.721aA	 2.597aB
IP13150	 5.683aA	 5.442aB	 5.210aC	 2.790aA	 2.618aA	 2.525aB
Shandaweel-1	 5.042bA	 4.831cB	 4.709cB	 2.248cB	 2.319bA	 2.390bA

Table 9. Effect of the Cut × Genotype interaction on the variations in metabolizable energy (ME) and net energy of 
lactation (NEL) combined for the 2017 and 2018 growing seasons.

Means followed by different lowercase letters in the same column and/or different uppercase letters in the same row 
for each studied parameter are significantly different according to the LSD test at 0.05 level of probability.

Genotype 2nd Cut

ME

1st Cut 3rd Cut 2nd Cut

NEL

1st Cut 3rd Cut
MJ kg-1 DM MJ kg-1 DM 

Table 10. Variations in microbial protein (MP), gas production (GP), and total short chain fatty acids (SCFA) among the 
five tested genotypes combined for the 2017 and 2018 growing seasons.

	 g kg-1 OM	 mL g-1 OM	 mM
IP19586	 47.0a	 20.7b	 45.5b
IP19612	 43.9b	 20.7b	 45.6b
IP6105	 47.4a	 24.2a	 46.6a
IP13150	 47.8a	 24.5a	 47.4a
Shandaweel-1	 44.2b	 19.5b	 42.9c

MP

Means followed by different lowercase letters in the same column for each studied parameter are 
significantly different according to the LSD test at 0.05 level of probability.

Genotype GP SCFA
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towards flowering is accelerated with decreased day length (Soler et al., 2008). Early sowing is therefore accompanied 
by a prolonged photoperiod, which favors the crop and allows for a more efficient use of assimilates; this leads to the 
production of leafier and taller plants (Maas et al., 2007), which will directly result in higher forage production. The 
decision as to the optimum sowing date for pearl millet is commonly based on atmospheric and soil temperatures. Lemus 
(2015) reported that the optimum growth of pearl millet occurs between 32.78 and 35.00 ºC and with the best sowing 
dates from May to June. They added that later sowing negatively affected forage yield and should only be considered 
for short-term grazing or emergency forage production. The negligible differences in mean temperature accumulation 
prior to each cut for the three tested sowing dates in the present study (Table 1) might explain the small yield variations 
in response to sowing dates. 
	 The negative relationship between CP content and fiber fractions (NDF, ADF, and ADL)  was in line with findings of 
other researchers (Du et al., 2016). It was reported that sowing on 15 May and 1 June produced higher-quality forage 
(high CP and low fiber fractions) than late sowing on 15 June. This concurred with results reported by Silungwe et al. 
(2011) for sorghum, Sudan grass, and pearl millet. Late sowing is usually accompanied with increased temperature, which 
accelerates stem growth over leaf growth; this reduces the leaf to stem ratio and increases cell thickness (Wilson et al., 
1991). These morphological changes are usually accompanied by decreased CP content and increased fiber and lignin 
deposition (Silungwe et al., 2011). This also occurred in the present study in which the later the sowing date, the higher 
the lignin content produced from each cut.  
	 Regarding the variations in DM accumulation as related to sowing date and cut, the first cut of the crop sown 15 May 
and 1 June accumulated higher DM content than later cuts. This occurred because the first cut was done after 45 DAS and 
had a longer period to accumulate DM content than later cuts. However, Radhouane (2008) reported a marked decrease in 
the number of days after sowing to maturity with delayed sowing of pearl millet in a similar Mediterranean environment. 
Accelerated growth accompanied by delayed sowing was probably the cause of the increase in DM accumulation of the 
third cut of the crop sown on 15 June and its very low yield. The abovementioned author therefore recommended sowing 
pearl millet from early May to early June in the Mediterranean region.
	 Unlike the present study, Machicek (2018) and Makarana et al. (2018) reported the highest quality for the first cut of 
pearl millet compared with subsequent cuts in terms of high CP and low fiber fractions (NDF and ADF). In the present 
study, the second cut was usually superior in quality than the first and third cuts. In partial agreement with our results, 
Salama and Zeid (2016) reported that the second cut of forage grasses produced a CP content that was as high as in the 
first cut, while the first cut had the lowest fiber fractions and the highest NFE. Analysis of the regrowth dynamics of pearl 
millet after cutting would explain the fluctuations in forage quality of the different cuts. Obeng et al. (2012) identified 
three tillering patterns in pearl millet, synchronous and non-synchronous tillering in which tillers arise from the basal 
leaf bud axils and sub-terminal tillering in which the tillers arise from the axillary buds. Since the first cut in the present 
study occurred at the vegetative stage (45 DAS), regrowth was initiated from non-basal (terminal and axillary) tillers and 
characterized by a denser tiller canopy than when the crop was cut at later growth stages (Stephenson and Posler, 1984). 
This was reflected in a higher leaf to stem ratio for the regrowth, leading to a high-quality second cut. 
	 Pronounced variations were detected among the evaluated genotypes for yield, DM accumulation, and nutritional 
components, which might be attributed to the different genetic makeup of the individual genotypes which is affected by 
environmental conditions (Divya et al., 2017). In an attempt to explain the variations in the nutritional value among pearl 
millet genotypes, Hassan et al. (2014) referred these variations to the relative contribution of leaves to total biomass in 
the different genotypes. The present study indicated that the genotypes characterized by higher DM content had better 
nutritional values, in terms of high CP, NFE and low fiber components.
	 In forage research, DMY should be considered to efficiently select a proper genotype for incorporation in breeding 
programs because of its economic significance to the crop (Stida et al., 2018). In comparison with other forage grasses, 
and with millets grown in other farming systems, the tested genotypes produced acceptable amounts of DMY. The DMY 
production of the current genotypes was as high as that produced by the superior millet hybrids tested by Rai et al. (2012). 
They proved to be superior under Egyptian conditions than the millet genotypes investigated by Abd El-Lattief (2011) and 
Ziki et al. (2019). Atis and Akar (2018) reported DMY means of 2.64 and 2.45 t ha-1 for wheat cut at the vegetative growth 
stage; these values were less than those obtained from the millet genotypes in the present study. The tested genotypes 
contained better amounts of CP and NFE; however, NDF and ADF contents were comparable to sorghum and Sudan grass 
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grown under similar farming contexts (Salama and Zeid, 2016). Although their CP content was comparable to maize cut at 
a similar age, they exhibited lower digestibility than maize (Salama, 2019), which might be attributed to the higher fiber 
content in pearl millet. Results of the nutritional performance of the tested pearl millet genotypes were also comparable to 
those obtained under similar arid/semiarid environments in Sudan (Babiker et al., 2015) and India (Makarana et al., 2018).  

In vitro nutrient degradability and ruminal gas production
Chemical composition, in vitro measurements, digestibility, and energy estimates are the most commonly used tools when 
ranking different forage genotypes. A clear relationship between chemical composition and in vitro fermentation traits is 
well documented (Salama et al., 2020). To our knowledge, the chemical composition, in vitro gas production, digestibility, 
and energy values of the five evaluated pearl millet genotypes has not been previously investigated. 
	 The chemical composition and degradability of feed are among the most important determinants for the amount of 
GP (Blümmel et al., 1999). Gas production indicates carbohydrate fermentation to the different SCFA, mainly acetate, 
butyrate, and propionate (Menke and Steingass, 1988); therefore, the amount of GP is mainly influenced by carbohydrate 
content in feed (Deaville and Givens, 2001), while the contribution of protein fermentation to GP is relatively small, 
although positive (Menke and Steingas, 1988). Our GP values after 24 h ranged from 24.53 to 19.53 mL 200 mg-1 DM for 
IP13150 and ‘Shandaweel-1’, respectively. Pal et al. (2015) reported a negative relationship between GP and structural 
carbohydrates (NDF and ADF contents), characterized by a slow fermentation rate by rumen microflora. Consequently, 
high GP values accompanied high SCFA production of genotype IP13150, which was  also characterized by high CP and 
NFE values and low fiber values. 
	 Fiber is a very important component in any feedstuff that supplies ruminants with the essential energy for production 
and maintenance and also preserves rumen health (Du et al., 2016). However, a negative relationship between fiber 
fractions (NDF, ADF, and ADL) and digestibility measures of forages and feedstuffs was reported by several researchers 
(Pal et al., 2015; Mokoboki et al., 2019); this was similar to the findings of the present study. Specifically, the increase 
in lignin as a non-degradable cell wall component strongly reduces the digestibility of any feedstuff (Du et al., 2016). 
Digestibility is an important indicator of the  nutritive value of forage. The chemical composition of the feed is closely 
related to its digestibility and to the expected performance of the ruminant receiving it (Salama, 2019). Digestibility in 
our study was positively related to the CP content. In an attempt to quantify the contribution of each of the chemical 
components to determine OMD in maize fodder, Salama (2019) concluded that the variations in OMD mostly depended 
on the variations in the CP content (r2 = 0.8279). This supports our findings that treatments characterized by higher CP and 
lower fiber values, such as early sowing (15 May) of the genotype IP13150, resulted in the highest OMD values compared 
with the other treatments. The tested pearl millet genotypes exhibited OMD values comparable to other forage grasses 
(Salama, 2019), although lower than forage legumes (Salama and Zeid, 2016). It is evident that roughages are generally 
deficient in fermentable carbohydrates, which results in relatively low OMD values. The tested genotypes in our study had 
relatively limited OMD values, probably due to their high NDF contents. Therefore, current breeding efforts are focused 
on improving forage grass digestibility, which includes increasing the water-soluble carbohydrate content against the cell 
wall contents, especially lignin, (Capstaff and Miller, 2018); this could also be adopted in pearl millet. Despite the limited 
digestibility of pearl millet, its acceptable DMY production in hot and dry climates of the arid/semiarid regions, compared 
with other forage grasses, generally gives it a considerable advantage.
	 Nitrogen-free extract (NFE) represents the fraction of easily fermentable dietary carbohydrates, including starches, 
sugars, and fructans in the present study. High NFE in the diet enhances ruminal NH3-N concentration and reduces 
urine urea secretion (Lu et al., 2019), and facilitates the production of microbial metabolites, such as SCFA. In addition, 
NFE provides the rumen microflora with the energy required for MP synthesis. The superior genotype IP13150 in our 
study was characterized by the highest significant NFE, SCFA, and MP, confirming the positive relationship between 
the three parameters. 
	 Energy is a limiting factor for growth, maintenance, and production of all living organisms. It substantially determines 
the milk and meat production levels in livestock production systems. The main chemical components that contribute to 
energy supply are carbohydrates, proteins, and lipids (Hall and Eastridge, 2014); energy values are known to respond 
positively to the CP content and negatively to fiber content (Mokoboki et al., 2019). This explains the higher predicted 
ME and NEL values reported for genotype IP13150, which was characterized by low fiber and high CP contents compared 
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with the other tested genotypes. On the contrary, ‘Shandaweel-1’ was characterized by low CP and high fiber fractions, 
which resulted in low energy values. The energy values of the tested genotypes, despite being relatively low, were usually 
comparable to dry roughages (Garg et al., 2012) and browse species adapted to dry conditions (Mokoboki et al., 2019). 
Total digestible nutrients represent the usable energy content of any forage or feedstuff. Machicek (2018) stated that 
cutting multi-cut crops at 45 DAS resulted in higher TDN values for the first cut than later cuts; unlike these results, the 2nd 
cut in our study was characterized by higher TDN values than the other cuts. This was largely attributed to the previously 
explained high quality of the second cut in terms of lower amounts of fiber fractions (especially NDF and lignin) and 
higher CP content. The reported negative relationship between TDN and NDF and lignin for forages (Jayanegara et al., 
2019) supports the results of the present study.

CONCLUSIONS

Studying the feed value in terms of in vitro nutrient degradability and ruminal GP provided a deep understanding of 
the quality of the different cuts for the five tested genotypes; and together with yield, they provided a better profile for 
the pearl millet genotypes. In the present study, in vitro gas production (GP), digestibility, and energy values of the 
genotypes greatly depended on their chemical composition. The genotype IP13150 maintained the desirable balance 
between productivity and quality. In addition to its high dry matter yield, it was characterized by the highest crude protein 
and N-free extract contents, yet the lowest fiber fractions. This was then reflected on its high organic matter digestibility, 
GP, and short chain fatty acid production, along with the highest energy values among all the genotypes. Altering the 
sowing date generally exerted a limited effect on the studied parameters, early sowing on 15 May was superior to later 
sowing on 1 June and 15 June. The second cut was superior to the first and third cuts taken from the genotypes for forage 
production; this highlights the importance and success of pearl millet as a multi-cut crop under environments similar to 
those of the present study. 
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